-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Deployed 4e9e563 with MkDocs version: 1.6.0
- Loading branch information
1 parent
c70908d
commit eff3217
Showing
4 changed files
with
3 additions
and
3 deletions.
There are no files selected for viewing
Binary file modified
BIN
+0 Bytes
(100%)
material/overrides/hooks/__pycache__/shortcodes.cpython-312.pyc
Binary file not shown.
Binary file modified
BIN
+0 Bytes
(100%)
material/overrides/hooks/__pycache__/translations.cpython-312.pyc
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
{"config":{"lang":["en"],"separator":"[\\s\\u200b\\-_,:!=\\[\\]()\"`/]+|\\.(?!\\d)|&[lg]t;|(?!\\b)(?=[A-Z][a-z])","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Home","text":""},{"location":"#time-series-extraction-for-polygonal-data","title":"Time Series Extraction for Polygonal Data","text":""},{"location":"#name","title":"Name","text":"<ul> <li>T(h)eroPoDa + - Time Series Extraction for Polygonal Data and Trend Analysis \u2b1b</li> </ul>"},{"location":"#description","title":"Description","text":"<ul> <li>Toolkit created to extract Time Series information from Sentinel 2 \ud83d\udef0 data stored in Earth Engine, gap filling and trend analysis </li> </ul>"},{"location":"#author","title":"Author","text":"<ul> <li>Vin\u00edcius Vieira Mesquita - [email protected] (Main Theropoda)</li> </ul>"},{"location":"#co-author","title":"Co-author","text":"<ul> <li>Leandro Leal Parente - [email protected] (Gap Filling and Trend Analysis implementation)</li> </ul>"},{"location":"#version","title":"Version","text":"<ul> <li>1.1.0</li> </ul>"},{"location":"#how-to-use","title":"How to use","text":"<ul> <li>At this version of TheroPoDa (1.1.0), you could extract a series of NDVI data from Sentinel 2 for a Feature Collection of polygons simplily by adjusting some variables at the end of code:</li> </ul> variable usage example asset Choosed Earth Engine Vector Asset users/vieiramesquita/LAPIG_FieldSamples/lapig_goias_fieldwork_2022_50m id_field Vector column used as ID (use unique identifiers!) ID_POINTS output_name Output filename LAPIG_Pasture_S2_NDVI_Monitoring_FieldWork.csv"},{"location":"#roadmap","title":"Roadmap","text":"<ul> <li>Implement arguments to choose other zonal reducers (i.e. percentile, variance, etc.)</li> <li>Implement arguments to choose other satellite data series (i.e. Landsat series, MODIS products)</li> <li>Implement a visualization of the processed data (or samples of it)</li> </ul>"},{"location":"theropoda/","title":"Theropoda Module","text":"<p>This module includes functionalities related to <code>theropoda.py</code> code.</p>"},{"location":"theropoda/#overview","title":"Overview","text":"<p>The <code>theropoda.py</code> module provides functions to extract time series information from Sentinel 2 data stored in Earth Engine.</p>"},{"location":"theropoda/#attributes","title":"Attributes","text":"<ul> <li><code>asset</code> (str): Choosed Earth Engine vector asset.</li> <li><code>id_field</code> (str): Vector column used as ID (use unique identifiers!).</li> <li><code>output_name</code> (str): Output filename.</li> </ul>"},{"location":"theropoda/#example-usage","title":"Example Usage","text":"<pre><code>asset = 'users/vieiramesquita/LAPIG_FieldSamples/lapig_goias_fieldwork_2022_50m'\nid_field = 'ID_POINTS'\noutput_name = 'LAPIG_Pasture_S2_NDVI_Monitoring_FieldWork.csv'\n</code></pre>"},{"location":"theropoda/#functions","title":"Functions","text":""},{"location":"theropoda/#1gettimeseries","title":"1.<code>getTimeSeries</code>","text":"<p>This function is responsible to get the time series of Sentinel 2 data throught Earth Engine. It needs a <code>geometry</code> object in the <code>ee.Feature()</code> formart and the choosed vector propertie ID as the <code>id_field</code>.</p> <p>Parameters: - <code>geometry</code>: An ee.Feature() object representing the area of interest. - <code>bestEffort</code>: A boolean indicating whether to use a larger pixel (10m to 30m) if the polygon area is too big (default is False).</p> <p>Returns: - NDVI time series data along with other information for the specified geometry.</p>"},{"location":"theropoda/#2build_time_series","title":"2.<code>build_time_series</code>","text":"<p>Builds and writes NDVI time series data for a target vector asset, processing one polygon at a time.</p> <p>Parameters: - <code>index</code>: Index of the object being processed. - <code>obj</code>: Object ID for which the time series is being generated. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>outfile</code>: Output file path to write the time series data. - <code>asset</code>: Earth Engine vector asset. - <code>bestEffort</code>: A boolean indicating whether to use a larger scale if needed (default is False).</p> <p>Returns: - True if processing is successful, None if the polygon area is too small, False if an error occurs during processing and restart the process using the bestEffort approach.</p>"},{"location":"theropoda/#3build_time_series_check","title":"3.<code>build_time_series_check</code>","text":"<p>Checks the consistency of the NDVI time series library and handles errors during processing.</p> <p>Parameters: - <code>index</code>: Index of the object being processed. - <code>obj</code>: Object ID for which the time series is being checked. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>outfile</code>: Output file path where time series data is stored. - <code>asset</code>: Earth Engine vector asset. - <code>checker</code>: A boolean indicating whether to check if the polygon has been processed before (default is False).</p> <p>Returns: - A dictionary containing information about errors and processing time.</p>"},{"location":"theropoda/#4build_id_list","title":"4.<code>build_id_list</code>","text":"<p>Builds and writes a text file containing each Polygon ID used to extract the time series.</p> <p>Parameters: - <code>asset</code>: Earth Engine vector asset. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>colab_folder</code>: Path of the folder where the text file will be saved.</p>"},{"location":"theropoda/#5run","title":"5.<code>run</code>","text":"<p>Manages the overall workflow by catching argument information and initiating the process of extracting NDVI time series data for specified polygonal areas.</p> <p>Parameters: - <code>asset</code>: Earth Engine vector asset. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>output_name</code>: Name of the output file. - <code>colab_folder</code>: Path of the folder where the output file will be saved.</p>"},{"location":"trend_analysis/","title":"Trend Analysis Module","text":"<p>This module includes functionalities for trend analysis.</p>"},{"location":"trend_analysis/#overview","title":"Overview","text":"<p>The <code>trend_analysis</code> module provides functions to analyze trends in time series data.</p>"},{"location":"trend_analysis/#functions","title":"Functions","text":""},{"location":"trend_analysis/#calculate_moving_averagedata-window_size","title":"<code>calculate_moving_average(data, window_size)</code>","text":"<p>Calculates the moving average of a time series.</p>"},{"location":"trend_analysis/#parameters","title":"Parameters","text":"<ul> <li><code>data</code> (list of float): The time series data.</li> <li><code>window_size</code> (int): The window size for the moving average calculation.</li> </ul>"},{"location":"trend_analysis/#returns","title":"Returns","text":"<ul> <li><code>list of float</code>: The time series of moving averages.</li> </ul>"},{"location":"trend_analysis/#example-usage","title":"Example Usage","text":"<pre><code>from trend_analysis import calculate_moving_average\n\ndata = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\nmoving_average = calculate_moving_average(data, window_size=3)\nprint(moving_average) # Output: [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]\n</code></pre>"},{"location":"trend_analysis/#detect_trenddata","title":"<code>detect_trend(data)</code>","text":"<p>Detects the trend in a time series.</p>"},{"location":"trend_analysis/#parameters_1","title":"Parameters","text":"<ul> <li><code>data</code> (list of float): The time series data.</li> </ul>"},{"location":"trend_analysis/#returns_1","title":"Returns","text":"<ul> <li><code>str</code>: The detected trend ('upward', 'downward', 'stable').</li> </ul>"},{"location":"trend_analysis/#example-usage_1","title":"Example Usage","text":"<pre><code>from trend_analysis import detect_trend\n\ndata = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\ntrend = detect_trend(data)\nprint(trend) # Output: upward\n</code></pre>"},{"location":"trend_analysis/#forecastdata-periods","title":"<code>forecast(data, periods)</code>","text":"<p>Forecasts future values of a time series.</p>"},{"location":"trend_analysis/#parameters_2","title":"Parameters","text":"<ul> <li><code>data</code> (list of float): The time series data.</li> <li><code>periods</code> (int): The number of periods to forecast.</li> </ul>"},{"location":"trend_analysis/#returns_2","title":"Returns","text":"<ul> <li><code>list of float</code>: The forecasted values for the next periods.</li> </ul>"},{"location":"trend_analysis/#example-usage_2","title":"Example Usage","text":"<pre><code>from trend_analysis import forecast\n\ndata = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\nfuture_values = forecast(data, periods=3)\nprint(future_values) # Output: [11, 12, 13]\n</code></pre>"},{"location":"blog/","title":"Blog","text":""}]} | ||
{"config":{"lang":["en"],"separator":"[\\s\\u200b\\-_,:!=\\[\\]()\"`/]+|\\.(?!\\d)|&[lg]t;|(?!\\b)(?=[A-Z][a-z])","pipeline":["stopWordFilter"]},"docs":[{"location":"","title":"Home","text":""},{"location":"#time-series-extraction-for-polygonal-data","title":"Time Series Extraction for Polygonal Data","text":""},{"location":"#name","title":"Name","text":"<ul> <li>T(h)eroPoDa + - Time Series Extraction for Polygonal Data and Trend Analysis \u2b1b</li> </ul>"},{"location":"#description","title":"Description","text":"<ul> <li>Toolkit created to extract Time Series information from Sentinel 2 \ud83d\udef0 data stored in Earth Engine, gap filling and trend analysis </li> </ul>"},{"location":"#author","title":"Author","text":"<ul> <li>Vin\u00edcius Vieira Mesquita - [email protected] (Main Theropoda)</li> </ul>"},{"location":"#co-author","title":"Co-author","text":"<ul> <li>Leandro Leal Parente - [email protected] (Gap Filling and Trend Analysis implementation)</li> </ul>"},{"location":"#version","title":"Version","text":"<ul> <li>1.1.0</li> </ul>"},{"location":"#how-to-use","title":"How to use","text":"<ul> <li>At this version of TheroPoDa (1.1.0), you could extract a series of NDVI data from Sentinel 2 for a Feature Collection of polygons simplily by adjusting some variables at the end of code:</li> </ul> variable usage example asset Choosed Earth Engine Vector Asset users/vieiramesquita/LAPIG_FieldSamples/lapig_goias_fieldwork_2022_50m id_field Vector column used as ID (use unique identifiers!) ID_POINTS output_name Output filename LAPIG_Pasture_S2_NDVI_Monitoring_FieldWork.csv"},{"location":"#roadmap","title":"Roadmap","text":"<ul> <li>Implement arguments to choose other zonal reducers (i.e. percentile, variance, etc.)</li> <li>Implement arguments to choose other satellite data series (i.e. Landsat series, MODIS products)</li> <li>Implement a visualization of the processed data (or samples of it)</li> </ul>"},{"location":"theropoda/","title":"Theropoda Module","text":"<p>This module includes functionalities related to <code>theropoda.py</code> code.</p>"},{"location":"theropoda/#overview","title":"Overview","text":"<p>The <code>theropoda.py</code> module provides functions to extract time series information from Sentinel 2 data stored in Earth Engine.</p>"},{"location":"theropoda/#attributes","title":"Attributes","text":"<ul> <li><code>asset</code> (str): Choosed Earth Engine vector asset.</li> <li><code>id_field</code> (str): Vector column used as ID (use unique identifiers!).</li> <li><code>output_name</code> (str): Output filename.</li> </ul>"},{"location":"theropoda/#example-usage","title":"Example Usage","text":"<pre><code>asset = 'users/vieiramesquita/LAPIG_FieldSamples/lapig_goias_fieldwork_2022_50m'\nid_field = 'ID_POINTS'\noutput_name = 'LAPIG_Pasture_S2_NDVI_Monitoring_FieldWork.csv'\n</code></pre>"},{"location":"theropoda/#functions","title":"Functions","text":""},{"location":"theropoda/#1gettimeseries","title":"1.<code>getTimeSeries</code>","text":"<p>This function is responsible to get the time series of Sentinel 2 data throught Earth Engine. It needs a <code>geometry</code> object in the <code>ee.Feature()</code> formart and the choosed vector propertie ID as the <code>id_field</code>.</p>"},{"location":"theropoda/#parameters","title":"Parameters","text":"<ul> <li><code>geometry</code>: An ee.Feature() object representing the area of interest.</li> <li><code>bestEffort</code>: A boolean indicating whether to use a larger pixel (10m to 30m) if the polygon area is too big (default is False).</li> </ul>"},{"location":"theropoda/#returns","title":"Returns","text":"<ul> <li>NDVI time series data along with other information for the specified geometry.</li> </ul>"},{"location":"theropoda/#2build_time_series","title":"2.<code>build_time_series</code>","text":"<p>Builds and writes NDVI time series data for a target vector asset, processing one polygon at a time.</p>"},{"location":"theropoda/#parameters_1","title":"Parameters","text":"<ul> <li><code>index</code>: Index of the object being processed.</li> <li><code>obj</code>: Object ID for which the time series is being generated.</li> <li><code>id_field</code>: Field name representing the ID in the vector asset.</li> <li><code>outfile</code>: Output file path to write the time series data.</li> <li><code>asset</code>: Earth Engine vector asset.</li> <li><code>bestEffort</code>: A boolean indicating whether to use a larger scale if needed (default is False).</li> </ul>"},{"location":"theropoda/#returns_1","title":"Returns","text":"<ul> <li>True if processing is successful, None if the polygon area is too small, False if an error occurs during processing and restart the process using the bestEffort approach.</li> </ul>"},{"location":"theropoda/#3build_time_series_check","title":"3.<code>build_time_series_check</code>","text":"<p>Checks the consistency of the NDVI time series library and handles errors during processing.</p> <p>Parameters: - <code>index</code>: Index of the object being processed. - <code>obj</code>: Object ID for which the time series is being checked. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>outfile</code>: Output file path where time series data is stored. - <code>asset</code>: Earth Engine vector asset. - <code>checker</code>: A boolean indicating whether to check if the polygon has been processed before (default is False).</p> <p>Returns: - A dictionary containing information about errors and processing time.</p>"},{"location":"theropoda/#4build_id_list","title":"4.<code>build_id_list</code>","text":"<p>Builds and writes a text file containing each Polygon ID used to extract the time series.</p> <p>Parameters: - <code>asset</code>: Earth Engine vector asset. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>colab_folder</code>: Path of the folder where the text file will be saved.</p>"},{"location":"theropoda/#5run","title":"5.<code>run</code>","text":"<p>Manages the overall workflow by catching argument information and initiating the process of extracting NDVI time series data for specified polygonal areas.</p> <p>Parameters: - <code>asset</code>: Earth Engine vector asset. - <code>id_field</code>: Field name representing the ID in the vector asset. - <code>output_name</code>: Name of the output file. - <code>colab_folder</code>: Path of the folder where the output file will be saved.</p>"},{"location":"trend_analysis/","title":"Trend Analysis Module","text":"<p>This module includes functionalities for trend analysis.</p>"},{"location":"trend_analysis/#overview","title":"Overview","text":"<p>The <code>trend_analysis</code> module provides functions to analyze trends in time series data.</p>"},{"location":"trend_analysis/#functions","title":"Functions","text":""},{"location":"trend_analysis/#calculate_moving_averagedata-window_size","title":"<code>calculate_moving_average(data, window_size)</code>","text":"<p>Calculates the moving average of a time series.</p>"},{"location":"trend_analysis/#parameters","title":"Parameters","text":"<ul> <li><code>data</code> (list of float): The time series data.</li> <li><code>window_size</code> (int): The window size for the moving average calculation.</li> </ul>"},{"location":"trend_analysis/#returns","title":"Returns","text":"<ul> <li><code>list of float</code>: The time series of moving averages.</li> </ul>"},{"location":"trend_analysis/#example-usage","title":"Example Usage","text":"<pre><code>from trend_analysis import calculate_moving_average\n\ndata = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\nmoving_average = calculate_moving_average(data, window_size=3)\nprint(moving_average) # Output: [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0]\n</code></pre>"},{"location":"trend_analysis/#detect_trenddata","title":"<code>detect_trend(data)</code>","text":"<p>Detects the trend in a time series.</p>"},{"location":"trend_analysis/#parameters_1","title":"Parameters","text":"<ul> <li><code>data</code> (list of float): The time series data.</li> </ul>"},{"location":"trend_analysis/#returns_1","title":"Returns","text":"<ul> <li><code>str</code>: The detected trend ('upward', 'downward', 'stable').</li> </ul>"},{"location":"trend_analysis/#example-usage_1","title":"Example Usage","text":"<pre><code>from trend_analysis import detect_trend\n\ndata = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\ntrend = detect_trend(data)\nprint(trend) # Output: upward\n</code></pre>"},{"location":"trend_analysis/#forecastdata-periods","title":"<code>forecast(data, periods)</code>","text":"<p>Forecasts future values of a time series.</p>"},{"location":"trend_analysis/#parameters_2","title":"Parameters","text":"<ul> <li><code>data</code> (list of float): The time series data.</li> <li><code>periods</code> (int): The number of periods to forecast.</li> </ul>"},{"location":"trend_analysis/#returns_2","title":"Returns","text":"<ul> <li><code>list of float</code>: The forecasted values for the next periods.</li> </ul>"},{"location":"trend_analysis/#example-usage_2","title":"Example Usage","text":"<pre><code>from trend_analysis import forecast\n\ndata = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\nfuture_values = forecast(data, periods=3)\nprint(future_values) # Output: [11, 12, 13]\n</code></pre>"},{"location":"blog/","title":"Blog","text":""}]} |
Oops, something went wrong.