Skip to content

Bayesian Parameter Estimation (based on pystan) of reinforcement learning and sequential sampling models, and combinations of the two.

License

Notifications You must be signed in to change notification settings

laurafontanesi/rlssm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

rlssm

rlssm is a Python package for fitting reinforcement learning (RL) models, sequential sampling models (DDM, RDM, LBA, ALBA, and ARDM), and combinations of the two, using Bayesian parameter estimation.

Parameter estimation is done at an individual or hierarchical level using PyStan, the Python Interface to Stan. Stan performs Bayesian inference using the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo.

Install

You can install the rlssm package using:

pip install rlssm

Make sure you have the dependecies installed first.

Dependencies

  • pystan=2.19
  • pandas
  • scipy
  • seaborn

Conda environment (suggested)

If you have Andaconda or miniconda installed and you would like to create a separate environment:

conda create --n stanenv python=3 pandas scipy seaborn pystan=2.19
conda activate stanenv
pip install rlssm

Documentation

The latest documentation can be found here: https://rlssm.readthedocs.io/

Cite

DOI

About

Bayesian Parameter Estimation (based on pystan) of reinforcement learning and sequential sampling models, and combinations of the two.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •