-
Notifications
You must be signed in to change notification settings - Fork 162
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Issue3492 direct evaporative cooler #3543
Merged
JayHuLBL
merged 83 commits into
lbl-srg:issue3492_DirectEvaporativeCooler
from
karthikeyad-pnnl:issue3492_DirectEvaporativeCooler
Mar 28, 2024
Merged
Changes from all commits
Commits
Show all changes
83 commits
Select commit
Hold shift + click to select a range
a432926
Merge pull request #20 from lbl-srg/master
karthikeyad-pnnl 3b2b6ca
Merge remote-tracking branch 'upstream/master'
karthikeyad-pnnl 7f9c083
Merge remote-tracking branch 'upstream/master'
karthikeyad-pnnl b8b08fe
Merge remote-tracking branch 'upstream_local/master'
karthikeyad-pnnl 53454bf
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl 45d798b
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl ec99cc6
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl b5ae2ff
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl bc9857c
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl e59ff2a
Merge remote-tracking branch 'upstream/master'
karthikeyad-pnnl 7b5cf41
Merge pull request #79 from lbl-srg/master
karthikeyad-pnnl bdaf8e0
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl 50476d0
Merge branch 'lbl-srg:master' into master
karthikeyad-pnnl 2286744
Added direct evaporative cooler blocks to Buildings library
karthikeyad-pnnl 15f7242
Merge branch 'lbl-srg:master' into issue3492_DirectEvaporativeCooler
karthikeyad-pnnl 82d4872
Change path for missing blocks.
lzwang26 ab30959
Change istance names of the models.
lzwang26 77555e3
Add comments for variables and parameters in model 'DirectCalculations'
lzwang26 e80f545
Clean block 'DirectCalculations' according to the conventions.
lzwang26 756a60f
Clean the model 'Direct'
lzwang26 76ece54
Add documentations and icons
lzwang26 f5af7c1
Add documentations.
lzwang26 c36f05d
Merge pull request #85 from lzwang26/issue3492_DirectEvaporativeCooler
karthikeyad-pnnl 8e12210
Added validation scripts and modified validation model for direct eva…
karthikeyad-pnnl d24661e
Updated resources and scripts for validation models
karthikeyad-pnnl 23ba270
Merge pull request #1 from karthikeyad-pnnl/issue3492_DirectEvaporati…
lzwang26 a9346c9
Further clean up the model 'Xi_TDryBulTWetBul'
lzwang26 f33ec8a
Further clean up the model 'DirectCalculations'
lzwang26 663f34d
Further clean up the model 'Direct'
lzwang26 1a538a5
Clean up the model 'Validation.DirectCalculations'
lzwang26 f3764ee
Clean up the model 'Validation.DirectCalculations'
lzwang26 d282647
Clean up the model 'Validation.Direct'
lzwang26 e91ab53
Add documentation for the direct calculation validation.
lzwang26 4e7d5b1
Finalized the documentations for all the models.
lzwang26 7346572
Merge branch 'issue3492_DirectEvaporativeCooler' of https://github.co…
lzwang26 bf409d6
Correct the path of DirectCalculations.mos
lzwang26 449ec7d
Add the script file.
lzwang26 697971d
Merge pull request #87 from lzwang26/issue3492_DirectEvaporativeCooler
karthikeyad-pnnl 35911fb
Added files for indirect dry evaporative cooler
karthikeyad-pnnl 54e897c
Updated models and added validation script and reference data
karthikeyad-pnnl 42c8673
Merge pull request #2 from karthikeyad-pnnl/issue3492_DirectEvaporati…
lzwang26 5419ec8
Revise the documentation of 'Baseclasses.Validation.DirectCalculations'
lzwang26 6a6fe59
Revise the documentation of 'Validation.Direct'
lzwang26 689f601
Clean up IndirectDry model
lzwang26 8c252ba
Clean up Validation.IndirectDry
lzwang26 f898a2b
Add documentation and revision for 'IndirectDry'
lzwang26 ddbd8dd
Add documentations for 'Validation.IndirectDry'
lzwang26 56c0e2b
Correct some errors.
lzwang26 98b324c
Merge pull request #89 from lzwang26/issue3492_DirectEvaporativeCooler
karthikeyad-pnnl b12878d
Added new clas for indirect wet cooler
karthikeyad-pnnl f51c0be
Backing files up
karthikeyad-pnnl 8eda1b9
Backing up files
karthikeyad-pnnl a552549
Updated formatting and documentation
karthikeyad-pnnl 971cfb8
Updated package order files and added default component names
karthikeyad-pnnl e72321b
Addded tolerances to validation models
karthikeyad-pnnl 1b40511
Added unit test results
karthikeyad-pnnl 3d3f7e0
Merge pull request #2 from karthikeyad-pnnl/issue3492_DirectEvaporati…
cerrinamouchref-pnnl ca28a08
updated files to address comments on PR
cerrinamouchref-pnnl 4921db9
Updated file paths for validation reference data
karthikeyad-pnnl 9a3e1c2
Added pending unit test results
karthikeyad-pnnl 808cabf
Reverted files that did not have any changes in current PR
karthikeyad-pnnl d6728b4
Reverted file that was not being changed through PR
karthikeyad-pnnl e0d4237
Updated Naming to address comments
cerrinamouchref-pnnl b4bb7a3
Merge pull request #97 from cerrinamouchref-pnnl/issue3492_DirectEvap…
karthikeyad-pnnl 683685b
changes to validation models based on PR comments
cerrinamouchref-pnnl 373c45d
Changed instance names as per comment on PR
karthikeyad-pnnl 4f4aba3
Merge branch 'issue3492_DirectEvaporativeCooler' into issue3492_Direc…
karthikeyad-pnnl 88f5deb
Removed unnecessary changes
karthikeyad-pnnl 86f3e0d
Removed unnecessary formatting changes
karthikeyad-pnnl b62fe5c
Merge pull request #98 from karthikeyad-pnnl/issue3492_DirectEvaporat…
karthikeyad-pnnl 32d717a
Addressed comment 'Dry bulb temperature of the inlet air'
lzwang26 a1fd359
Address comments 'Dry bulb temperature of the primary inlet air'
lzwang26 925e73d
Delte algorithm assignments
lzwang26 0a72565
Change equation to connect in Baseclasses.DirectCalculations.mo
lzwang26 a3fbada
delete visible = true in Baseclasses.IndirectWetCalculations.mo
lzwang26 7f31be3
Updated unit test results
lzwang26 6b01c91
Modified DirectCalculations.mo
lzwang26 c48211b
Merge pull request #116 from lzwang26/issue3492_DirectEvaporativeCooler
karthikeyad-pnnl 6082fe7
Merge pull request #123 from lbl-srg/issue3492_DirectEvaporativeCooler
karthikeyad-pnnl 17c66d1
Removed redundant variable
karthikeyad-pnnl 6aea34b
Merge branch 'issue3492_DirectEvaporativeCooler' of github.com:karthi…
karthikeyad-pnnl ff028c7
Moved validation instance to start of model
karthikeyad-pnnl 0229f85
Updated documentation sections for all models
karthikeyad-pnnl File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
188 changes: 188 additions & 0 deletions
188
Buildings/Fluid/Humidifiers/EvaporativeCoolers/Baseclasses/DirectCalculations.mo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
within Buildings.Fluid.Humidifiers.EvaporativeCoolers.Baseclasses; | ||
block DirectCalculations | ||
"Calculates the water vapor mass flow rate of a direct evaporative coolder" | ||
|
||
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium | ||
"Medium"; | ||
|
||
parameter Modelica.Units.SI.Area padAre | ||
"Area of the rigid media evaporative pad"; | ||
|
||
parameter Modelica.Units.SI.Length dep | ||
"Depth of the rigid media evaporative pad"; | ||
|
||
parameter Real effCoe[11] = {0.792714, 0.958569, -0.25193, -1.03215, 0.0262659, | ||
0.914869, -1.48241, -0.018992, 1.13137, 0.0327622, | ||
-0.145384} | ||
"Coefficients for evaporative medium efficiency calculation"; | ||
|
||
Real eff( | ||
final unit="1") | ||
"Evaporative humidifier efficiency"; | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput V_flow( | ||
final unit="m3/s", | ||
displayUnit="m3/s", | ||
final quantity = "VolumeFlowRate") | ||
"Air volume flow rate" | ||
annotation ( | ||
Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,-20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-120,-20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput TDryBulIn( | ||
final unit="K", | ||
displayUnit="degC", | ||
final quantity="ThermodynamicTemperature") | ||
"Dry bulb temperature of the inlet air" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-120,20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput TWetBulIn( | ||
final unit="K", | ||
displayUnit="degC", | ||
final quantity="ThermodynamicTemperature") | ||
"Wet bulb temperature of the inlet air" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-120,60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput p( | ||
final unit="Pa", | ||
displayUnit="Pa", | ||
final quantity="AbsolutePressure") | ||
"Pressure" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,-60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-120,-60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealOutput dmWat_flow( | ||
final unit="kg/s", | ||
displayUnit="kg/s", | ||
final quantity="MassFlowRate") | ||
"Water vapor mass flow rate difference between inlet and outlet" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={120,0}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={120,0}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Fluid.Humidifiers.EvaporativeCoolers.Baseclasses.Xi_TDryBulTWetBul | ||
XiOut(redeclare package Medium = Medium) | ||
"Water vapor mass fraction at the outlet"; | ||
|
||
Buildings.Fluid.Humidifiers.EvaporativeCoolers.Baseclasses.Xi_TDryBulTWetBul | ||
XiIn(redeclare package Medium = Medium) | ||
"Water vapor mass fraction at the inlet"; | ||
|
||
Modelica.Units.SI.Velocity vel | ||
"Air velocity"; | ||
|
||
Modelica.Units.SI.ThermodynamicTemperature TDryBulOut( | ||
displayUnit="degC") | ||
"Dry bulb temperature of the outlet air"; | ||
|
||
protected | ||
parameter Medium.ThermodynamicState sta_default=Medium.setState_pTX( | ||
T=Medium.T_default, p=Medium.p_default, X=Medium.X_default) | ||
"Default state of medium"; | ||
parameter Modelica.Units.SI.Density rho_default=Medium.density(sta_default) | ||
"Density, used to compute fluid volume"; | ||
|
||
equation | ||
vel =abs(V_flow)/padAre; | ||
eff = effCoe[1] + effCoe[2]*(dep) + effCoe[3]*(vel) + effCoe[4]*(dep^2) + | ||
effCoe[5]*(vel^2) + effCoe[6]*(dep*vel) + effCoe[7]*(vel*dep^2) + | ||
effCoe[8]*(dep*vel^3) + effCoe[9]*(dep^3*vel) + effCoe[10]*(vel^3*dep^2) + | ||
effCoe[11]*(dep^3*vel^2); | ||
TDryBulOut = TDryBulIn - eff*(TDryBulIn - TWetBulIn); | ||
connect(TDryBulIn, XiIn.TDryBul); | ||
connect(TWetBulIn, XiIn.TWetBul); | ||
connect(p, XiIn.p); | ||
connect(TWetBulIn, XiOut.TWetBul); | ||
connect(p, XiOut.p); | ||
TDryBulOut = XiOut.TDryBul; | ||
dmWat_flow = (XiOut.Xi[1] - XiIn.Xi[1])*V_flow*rho_default; | ||
annotation (Documentation(info="<html> | ||
<p>Block that calculates the water vapor mass flow rate addition in the | ||
direct evaporative cooler component. The calculations are based on the direct | ||
evaporative cooler model in the Engineering Reference document from EnergyPlus v23.1.0.</p> | ||
<p> | ||
The effectiveness of the evaporative media <code>eff</code> is calculated using | ||
the curve</p> | ||
<p align=\"center\" style=\"font-style:italic;\"> | ||
eff = effCoe[1] + effCoe[2]*(dep) + effCoe[3]*(vel) + effCoe[4]*(dep<sup>2</sup>) + | ||
effCoe[5]*(vel<sup>2</sup>) + effCoe[6]*(dep*vel) + effCoe[7]*(vel*dep<sup>2</sup>) + | ||
effCoe[8]*(dep*vel<sup>3</sup>) + effCoe[9]*(dep<sup>3</sup>*vel) + effCoe[10]*(vel<sup>3</sup>*dep<sup>2</sup>) + | ||
effCoe[11]*(dep<sup>3</sup>*vel<sup>2</sup>)</p> | ||
<p> | ||
where <code>effCoe</code> is the evaporative efficiency coefficients for the media, | ||
<code>vel</code> is the velocity of the fluid media, and <code>dep</code> is the | ||
depth of the evaporative media.<br> | ||
<code>vel</code> is calculated from the volume flowrate <code>V_flow</code> and | ||
evaporative media cross-sectional area <code>padAre</code> using | ||
</p> | ||
<p align=\"center\" style=\"font-style:italic;\"> | ||
vel = V_flow/padAre</p> | ||
<p> | ||
The outlet air drybulb temperature <code>TDryBulOut</code> is calculated using the heat-balance equation | ||
</p> | ||
<p align=\"center\" style=\"font-style:italic;\"> | ||
TDryBulOut = TDryBulIn - eff*(TDryBulIn - TWetBulIn)</p> | ||
<p> | ||
where <code>TDryBulIn</code> is the inlet air drybulb temperature and | ||
<code>TWetBulIn</code> is the inlet air wetbulb temperature.<br> | ||
The difference in humidity ratio between the inlet and outlet air is used to | ||
calculate the added mass of water vapor <code>dmWat_flow</code>, with the humidity | ||
ratios being determined from psychrometric relationships, while assuming the | ||
outlet air wetbulb temperature is the same as inlet air wetbulb temperature. | ||
</p> | ||
</html>", revisions="<html> | ||
<ul> | ||
<li> | ||
Semptember 14, 2023 by Cerrina Mouchref, Karthikeya Devaprasad, Lingzhe Wang:<br/> | ||
First implementation. | ||
</li> | ||
</ul> | ||
</html>"), Icon(graphics={ Text( | ||
extent={{-152,144},{148,104}}, | ||
textString="%name", | ||
textColor={0,0,255}), Rectangle(extent={{-100,100},{100,-100}}, | ||
lineColor={0,0,0}, | ||
fillColor={255,255,255}, | ||
fillPattern=FillPattern.Solid)})); | ||
end DirectCalculations; |
177 changes: 177 additions & 0 deletions
177
Buildings/Fluid/Humidifiers/EvaporativeCoolers/Baseclasses/IndirectWetCalculations.mo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
within Buildings.Fluid.Humidifiers.EvaporativeCoolers.Baseclasses; | ||
block IndirectWetCalculations | ||
"Calculates the heat transfer in an indirect wet evaporative cooler" | ||
|
||
parameter Real maxEff( | ||
displayUnit="1") | ||
"Maximum efficiency of heat exchanger coil"; | ||
|
||
parameter Real floRat( | ||
displayUnit="1") | ||
"Coil flow efficency ratio of actual to maximum heat transfer rate"; | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput VPri_flow( | ||
final unit="m3/s", | ||
displayUnit="m3/s", | ||
final quantity = "VolumeFlowRate") | ||
"Primary air volume flow rate" | ||
annotation ( | ||
Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,-60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-140,-60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput VSec_flow( | ||
final unit="m3/s", | ||
displayUnit="m3/s", | ||
final quantity = "VolumeFlowRate") | ||
"Secondary air volume flow rate" | ||
annotation ( | ||
Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,-100}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-140,-100}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput TDryBulPriIn( | ||
final unit="K", | ||
displayUnit="degC", | ||
final quantity="ThermodynamicTemperature") | ||
"Dry bulb temperature of the primary inlet air" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,100}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-140,100}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput TWetBulPriIn( | ||
final unit="K", | ||
displayUnit="degC", | ||
final quantity="ThermodynamicTemperature") | ||
"Wet bulb temperature of the primary inlet air" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-140,60}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput TDryBulSecIn( | ||
final unit="K", | ||
displayUnit="degC", | ||
final quantity="ThermodynamicTemperature") | ||
"Dry bulb temperature of the secondary inlet air" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-140,20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealInput TWetBulSecIn( | ||
final unit="K", | ||
displayUnit="degC", | ||
final quantity="ThermodynamicTemperature") | ||
"Wet bulb temperature of the secondary inlet air" | ||
annotation (Placement( | ||
visible=true, | ||
transformation( | ||
origin={-120,-20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={-140,-20}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Buildings.Controls.OBC.CDL.Interfaces.RealOutput TDryBulPriOut( | ||
displayUnit="degC", | ||
final unit="K", | ||
final quantity="ThermodynamicTemperature") | ||
"Dry bulb temperature of the outlet air" | ||
annotation (Placement( | ||
transformation( | ||
origin={120,0}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0), | ||
iconTransformation( | ||
origin={140,0}, | ||
extent={{-20,-20},{20,20}}, | ||
rotation=0))); | ||
|
||
Real eff( | ||
displayUnit="1") | ||
"Actual efficiency of component"; | ||
|
||
equation | ||
eff = max((maxEff - floRat*abs(VPri_flow)/abs(VSec_flow)),0); | ||
TDryBulPriOut = TDryBulPriIn - eff*(TDryBulSecIn - TWetBulSecIn); | ||
|
||
annotation (defaultComponentName="indWetCal", | ||
Documentation(info="<html> | ||
<p>Block that calculates the water vapor mass flow rate addition in the | ||
direct evaporative cooler component. The calculations are based on the indirect | ||
wet evaporative cooler model in the Engineering Reference document from EnergyPlus | ||
v23.1.0.</p> | ||
<p> | ||
The effective efficiency of the heat exchanger <code>eff</code> is calculated using | ||
the formula</p> | ||
<p align=\"center\" style=\"font-style:italic;\"> | ||
eff = max((maxEff - floRat*abs(VPri_flow)/abs(VSec_flow)),0)</p> | ||
<p> | ||
where <code>VPri_flow</code> and <code>VSec_flow</code> are the volume flow | ||
rates of the primary and secondary fluid media respectively. The maximum | ||
efficiency of the heat exchanger <code>maxEff</code> as well as the efficiency-reduction | ||
coil flow ratio <code>floRat</code> are empirically determined for the specific | ||
equipment using experiments.<br> | ||
The outlet primary fluid drybulb temperature <code>TDryBulPriOut</code> is calculated | ||
using the energy-balance equation | ||
</p> | ||
<p align=\"center\" style=\"font-style:italic;\"> | ||
TDryBulPriOut = TDryBulPriIn - eff*(TDryBulSecIn - TWetBulSecIn)</p> | ||
<p> | ||
where <code>TDryBulPriIn</code> is the inlet primary fluid drybulb temperature, | ||
<code>TDryBulSecIn</code> is the inlet secondary air drybulb temperature and | ||
<code>TWetBulSecIn</code> is the inlet secondary air wetbulb temperature. | ||
</p> | ||
</html>", revisions="<html> | ||
<ul> | ||
<li> | ||
September 29, 2023 by Karthikeya Devaprasad:<br/> | ||
First implementation. | ||
</li> | ||
</ul> | ||
</html>"), Icon(coordinateSystem(extent={{-120,-120},{120,120}}), | ||
graphics={ Text( | ||
extent={{-150,160},{150,120}}, | ||
textString="%name", | ||
textColor={0,0,255}), Rectangle(extent={{-120,120},{120,-120}}, | ||
lineColor={0,0,0}, | ||
fillColor={255,255,255}, | ||
fillPattern=FillPattern.Solid)}), | ||
Diagram(coordinateSystem(extent={{-100,-120},{100,120}}))); | ||
end IndirectWetCalculations; |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Change the section:
to be:
and change the
TDryBulOut
to be an internal connector.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Connections updated as per comment