-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Signed-off-by: zeramorphic <[email protected]>
- Loading branch information
1 parent
6b96a1f
commit f7c233c
Showing
3 changed files
with
85 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,82 @@ | ||
import ConNF.Construction.Hailperin | ||
|
||
/-! | ||
# New file | ||
In this file... | ||
## Main declarations | ||
* `ConNF.foo`: Something new. | ||
-/ | ||
|
||
noncomputable section | ||
universe u | ||
|
||
open Cardinal Ordinal ConNF.TSet | ||
|
||
namespace ConNF | ||
|
||
variable [Params.{u}] {α β γ δ ε ζ : Λ} (hβ : (β : TypeIndex) < α) (hγ : (γ : TypeIndex) < β) | ||
(hδ : (δ : TypeIndex) < γ) (hε : (ε : TypeIndex) < δ) (hζ : (ζ : TypeIndex) < ε) | ||
|
||
theorem ext (x y : TSet α) : | ||
(∀ z : TSet β, z ∈[hβ] x ↔ z ∈[hβ] y) → x = y := | ||
tSet_ext' hβ x y | ||
|
||
theorem exists_inter (x y : TSet α) : | ||
∃ w : TSet α, ∀ z : TSet β, z ∈[hβ] w ↔ z ∈[hβ] x ∧ z ∈[hβ] y := | ||
TSet.exists_inter hβ x y | ||
|
||
theorem exists_compl (x : TSet α) : | ||
∃ y : TSet α, ∀ z : TSet β, z ∈[hβ] y ↔ ¬z ∈[hβ] x := | ||
TSet.exists_compl hβ x | ||
|
||
theorem mem_singleton_iff (x y : TSet β) : | ||
y ∈[hβ] singleton hβ x ↔ y = x := | ||
typedMem_singleton_iff' hβ x y | ||
|
||
theorem mem_up_iff (x y z : TSet β) : | ||
z ∈[hβ] up hβ x y ↔ z = x ∨ z = y := | ||
TSet.mem_up_iff hβ x y z | ||
|
||
theorem op_def (x y : TSet γ) : | ||
op hβ hγ x y = up hβ (singleton hγ x) (up hγ x y) := | ||
rfl | ||
|
||
theorem exists_singletonImage (x : TSet β) : | ||
∃ y : TSet α, ∀ z w, | ||
op hγ hδ (singleton hε z) (singleton hε w) ∈[hβ] y ↔ op hδ hε z w ∈[hγ] x := | ||
TSet.exists_singletonImage hβ hγ hδ hε x | ||
|
||
theorem exists_insertion2 (x : TSet γ) : | ||
∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ | ||
op hε hζ a c ∈[hδ] x := | ||
TSet.exists_insertion2 hβ hγ hδ hε hζ x | ||
|
||
theorem exists_insertion3 (x : TSet γ) : | ||
∃ y : TSet α, ∀ a b c, op hγ hδ (singleton hε (singleton hζ a)) (op hε hζ b c) ∈[hβ] y ↔ | ||
op hε hζ a b ∈[hδ] x := | ||
TSet.exists_insertion3 hβ hγ hδ hε hζ x | ||
|
||
theorem exists_cross (x : TSet γ) : | ||
∃ y : TSet α, ∀ a, a ∈[hβ] y ↔ ∃ b c, a = op hγ hδ b c ∧ c ∈[hδ] x := | ||
TSet.exists_cross hβ hγ hδ x | ||
|
||
theorem exists_typeLower (x : TSet α) : | ||
∃ y : TSet δ, ∀ a, a ∈[hε] y ↔ ∀ b, op hγ hδ b (singleton hε a) ∈[hβ] x := | ||
TSet.exists_typeLower hβ hγ hδ hε x | ||
|
||
theorem exists_converse (x : TSet α) : | ||
∃ y : TSet α, ∀ a b, op hγ hδ a b ∈[hβ] y ↔ op hγ hδ b a ∈[hβ] x := | ||
TSet.exists_converse hβ hγ hδ x | ||
|
||
theorem exists_cardinalOne : | ||
∃ x : TSet α, ∀ a : TSet β, a ∈[hβ] x ↔ ∃ b, ∀ c : TSet γ, c ∈[hγ] a ↔ c = b := | ||
TSet.exists_cardinalOne hβ hγ | ||
|
||
theorem exists_subset : | ||
∃ x : TSet α, ∀ a b, op hγ hδ a b ∈[hβ] x ↔ ∀ c : TSet ε, c ∈[hε] a → c ∈[hε] b := | ||
TSet.exists_subset hβ hγ hδ hε | ||
|
||
end ConNF |