-
Notifications
You must be signed in to change notification settings - Fork 354
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
The component projections on an L1 direct sum are L-projections
- Loading branch information
Showing
1 changed file
with
74 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,6 +7,7 @@ import Mathlib.Algebra.Ring.Idempotents | |
import Mathlib.Analysis.Normed.Group.Basic | ||
import Mathlib.Order.Basic | ||
import Mathlib.Tactic.NoncommRing | ||
import Mathlib.Analysis.Normed.Lp.ProdLp | ||
|
||
/-! | ||
# M-structure | ||
|
@@ -311,3 +312,76 @@ instance Subtype.BooleanAlgebra [FaithfulSMul M X] : | |
sdiff_eq := fun P Q => Subtype.ext <| by rw [coe_sdiff, ← coe_compl, coe_inf] } | ||
|
||
end IsLprojection | ||
|
||
noncomputable section WithL1 | ||
|
||
open Real Set Filter RCLike Bornology Uniformity Topology NNReal ENNReal | ||
|
||
variable (p : ℝ≥0∞) (𝕜 α β : Type*) | ||
|
||
variable {p 𝕜 α β} | ||
variable [NormedAddCommGroup α] [NormedAddCommGroup β] | ||
|
||
def P1 : AddMonoid.End (WithLp p (α × β)) := (AddMonoidHom.inl α β).comp (AddMonoidHom.fst α β) | ||
Check failure on line 325 in Mathlib/Analysis/NormedSpace/MStructure.lean GitHub Actions / Build
|
||
|
||
def P2 : AddMonoid.End (WithLp p (α × β)) := (AddMonoidHom.inr α β).comp (AddMonoidHom.snd α β) | ||
Check failure on line 327 in Mathlib/Analysis/NormedSpace/MStructure.lean GitHub Actions / Build
|
||
|
||
|
||
lemma P1_apply (x : WithLp p (α × β)) : P1 x = (x.1, 0) := rfl | ||
|
||
lemma P2_apply (x : WithLp p (α × β)) : P2 x = (0, x.2) := rfl | ||
|
||
lemma test (a b : α) (c d : β) : | ||
((a,c) : WithLp p (α × β)) + ((b,d) : WithLp p (α × β)) = ((a+b,c+d) : WithLp p (α × β)) := by | ||
rfl | ||
|
||
lemma test2 (a b c : α) : a-b=c ↔ a=c+b := by exact sub_eq_iff_eq_add | ||
|
||
lemma P1_compl : (1 : AddMonoid.End (WithLp p (α × β))) - P1 = P2 := by | ||
apply AddMonoidHom.ext | ||
intro x | ||
have e1 : (1 - P1) x = (1 : AddMonoid.End (WithLp p (α × β))) x - P1 x := rfl | ||
rw [e1] | ||
rw [P1_apply, P2_apply, AddMonoid.End.coe_one, id_eq] | ||
have e2 : (x.1, 0) + (0, x.2) = x := by | ||
rw [test] | ||
rw [zero_add, add_zero] | ||
rfl | ||
rw [sub_eq_iff_eq_add] | ||
rw [add_comm] | ||
rw [e2] | ||
|
||
variable (x : WithLp p (α × β)) | ||
|
||
#check P1 x | ||
|
||
lemma P1_idempotent : IsIdempotentElem (M := (AddMonoid.End (WithLp p (α × β)))) P1 := by | ||
rw [IsIdempotentElem, P1] | ||
rfl | ||
|
||
variable [hp : Fact (1 ≤ p)] | ||
|
||
noncomputable instance instProdNormedAddCommGroup : | ||
NormedAddCommGroup (WithLp p (α × β)) := { | ||
WithLp.instProdNormedAddCommGroup p α β with | ||
} | ||
|
||
lemma WithLp.prod_norm_eq_of_1 (x : WithLp 1 (α × β)) : | ||
‖x‖ = ‖(WithLp.equiv 1 _ x).fst‖ + ‖(WithLp.equiv 1 _ x).snd‖ := by | ||
rw [WithLp.prod_norm_eq_of_nat 1 Nat.cast_one.symm, pow_one, pow_one, WithLp.equiv_fst, | ||
WithLp.equiv_snd, Nat.cast_one, (div_self one_ne_zero), Real.rpow_one] | ||
|
||
lemma P1_Lprojection : | ||
IsLprojection (WithLp 1 (α × β)) (M := (AddMonoid.End (WithLp 1 (α × β)))) (P1 (p := 1)) where | ||
proj := rfl | ||
Lnorm := by | ||
intro x | ||
rw [WithLp.prod_norm_eq_of_1] | ||
simp | ||
rw [P1_compl] | ||
rw [P1_apply, P2_apply] | ||
rw [WithLp.prod_norm_eq_of_1] | ||
rw [WithLp.prod_norm_eq_of_1] | ||
simp only [WithLp.equiv_fst, WithLp.equiv_snd, norm_zero, add_zero, zero_add] | ||
|
||
end WithL1 |