Skip to content

Commit

Permalink
induction principle
Browse files Browse the repository at this point in the history
  • Loading branch information
alreadydone committed Dec 26, 2024
1 parent 0d31641 commit 9d36f9f
Showing 1 changed file with 21 additions and 2 deletions.
23 changes: 21 additions & 2 deletions Mathlib/Order/BooleanSubalgebra.lean
Original file line number Diff line number Diff line change
Expand Up @@ -361,8 +361,12 @@ lemma closure_bot_sup_induction {p : ∀ g ∈ closure s, Prop} (mem : ∀ x hx,
compl_mem' := fun ⟨_, hb⟩ ↦ ⟨_, compl _ _ hb⟩ }
closure_le (L := L).mpr (fun y hy ↦ ⟨subset_closure hy, mem y hy⟩) hx |>.elim fun _ ↦ id

theorem mem_closure_iff_sup_sdiff (sup : SupClosed s) (inf : InfClosed s)
(bot_mem : ⊥ ∈ s) (top_mem : ⊤ ∈ s) (a : α) :
section sdiff_sup

variable (sup : SupClosed s) (inf : InfClosed s) (bot_mem : ⊥ ∈ s) (top_mem : ⊤ ∈ s)
include sup inf bot_mem top_mem

theorem mem_closure_iff_sup_sdiff {a : α} :
a ∈ closure s ↔ ∃ t : Finset (s × s), a = t.sup fun x ↦ x.1.1 \ x.2.1 := by
classical
refine ⟨closure_bot_sup_induction
Expand All @@ -381,6 +385,21 @@ theorem mem_closure_iff_sup_sdiff (sup : SupClosed s) (inf : InfClosed s)
simp_rw [Finset.sup_union, Finset.sup_insert, Finset.sup_singleton, sdiff_eq,
compl_sup, inf_left_comm z.1, compl_inf, compl_compl, inf_sup_right, inf_assoc]

@[elab_as_elim]
theorem closure_sdiff_sup_induction {p : ∀ g ∈ closure s, Prop}
(sdiff : ∀ x hx y hy, p (x \ y) (sdiff_mem (subset_closure hx) (subset_closure hy)))
(sup' : ∀ x hx y hy, p x hx → p y hy → p (x ⊔ y) (sup_mem hx hy))
{x} (hx : x ∈ closure s) : p x hx := by
obtain ⟨t, rfl⟩ := (mem_closure_iff_sup_sdiff sup inf bot_mem top_mem).mp hx
revert hx
classical
refine t.induction (by simpa using sdiff _ bot_mem _ bot_mem) fun x t _ ih hxt ↦ ?_
simp only [Finset.sup_insert] at hxt ⊢
exact sup' _ _ _ _ (sdiff _ x.1.2 _ x.2.2)
(ih <| (mem_closure_iff_sup_sdiff sup inf bot_mem top_mem).mpr ⟨_, rfl⟩)

end sdiff_sup

end BooleanAlgebra

section CompleteBooleanAlgebra
Expand Down

0 comments on commit 9d36f9f

Please sign in to comment.