Skip to content

Commit

Permalink
fix
Browse files Browse the repository at this point in the history
  • Loading branch information
YaelDillies committed Jan 3, 2025
1 parent ad22dc4 commit d7b9ef1
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 9 deletions.
9 changes: 4 additions & 5 deletions Mathlib/FieldTheory/Adjoin.lean
Original file line number Diff line number Diff line change
Expand Up @@ -778,11 +778,10 @@ theorem toSubalgebra_iSup_of_directed (dir : Directed (· ≤ ·) t) :
instance finiteDimensional_iSup_of_finite [h : Finite ι] [∀ i, FiniteDimensional K (t i)] :
FiniteDimensional K (⨆ i, t i : IntermediateField K L) := by
rw [← iSup_univ]
let P : Set ι → Prop := fun s => FiniteDimensional K (⨆ i ∈ s, t i : IntermediateField K L)
change P Set.univ
apply Set.Finite.induction_on
all_goals dsimp only [P]
· exact Set.finite_univ
refine Set.Finite.induction_on
(C := fun s _ => FiniteDimensional K (⨆ i ∈ s, t i : IntermediateField K L))
_ Set.finite_univ ?_ ?_
all_goals dsimp
· rw [iSup_emptyset]
exact (botEquiv K L).symm.toLinearEquiv.finiteDimensional
· intro _ s _ _ hs
Expand Down
6 changes: 2 additions & 4 deletions Mathlib/MeasureTheory/Integral/IntegrableOn.lean
Original file line number Diff line number Diff line change
Expand Up @@ -171,10 +171,8 @@ theorem integrableOn_singleton_iff {x : α} [MeasurableSingletonClass α] :

@[simp]
theorem integrableOn_finite_biUnion {s : Set β} (hs : s.Finite) {t : β → Set α} :
IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ := by
refine hs.induction_on ?_ ?_
· simp
· intro a s _ _ hf; simp [hf, or_imp, forall_and]
IntegrableOn f (⋃ i ∈ s, t i) μ ↔ ∀ i ∈ s, IntegrableOn f (t i) μ :=
hs.induction_on _ (by simp) <| by intro a s _ _ hf; simp [hf, or_imp, forall_and]

@[simp]
theorem integrableOn_finset_iUnion {s : Finset β} {t : β → Set α} :
Expand Down

0 comments on commit d7b9ef1

Please sign in to comment.