Deep object detection on a Raspberry Pi using Tensorflow & Keras.
- Raspberry Pi 3 Model B
- SD card 8+ GB
- 3.5" 480 x 320 TFT/SPI screen (XPT2046 controller)
- Install Raspbian
- Configure WiFi (optional, but recommended)
- @todo link to other basic Pi configuration tasks outside the scope of this guide (add authorized SSH keys, disable password, change hostname)
- Install system dependencies
sudo apt-get update && \
sudo apt-get upgrade && \
sudo apt-get install git python3-dev python3-pip \
crossbuild-essential-armhf libatlas-base-dev \
libhdf5-dev libhdf5-serial-dev \
libopenjp2-7-dev ibtiff5 build-essential cmake pkg-config && \
sudo pip3 install -U virtualenv
git clone [email protected]:leigh-johnson/rpi-vision.git
cd rpi-vision
pip install -r rpi.requirements.txt
WARNING these instructions only apply to the 3.5" TFT (XPT2046) screen. If you're using a difference size or controller, please refer to the instructions in LCD-show#README.
git clone [email protected]:goodtft/LCD-show.git
chmod -R 755 LCD-show
cd LCD-show
sudo ./LCD35-show
This step is only neccessary if you're using an SPI Display. If you're using an HDMI display, skip this step.
For better TFT screen performance, add the following to /boot/config.txt
. Refer to Raspbian's video options in config.txt if you're using a different display.
@ todo
@todo
pip install -r trainer.requirements.txt
@todo API docs
@todo API docs
tensorboard --logdir gs://my-gcs-bucket/my-model/logs/