Skip to content
/ DMHomo Public

[ToG 2024]: DMHomo: Learning Homography with Diffusion Models

License

Notifications You must be signed in to change notification settings

lhaippp/DMHomo

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DMHomo: Learning Homography with Diffusion Models

dl.acm.org/doi/10.1145/3652207

author version manuscript: google drive

Data Generator Module (DGM)

Inference

We prepare the weights of DGM at: https://huggingface.co/Lhaippp/DMHomo/blob/main/DGM.pt

We pre-computed conditions (i.e., mask and homography) for generating training data at: https://huggingface.co/Lhaippp/DMHomo/blob/main/DGM_Conditions.zip

cd DGM
# the following code is tested under one 2080Ti GPU with 8 CPUs and 50G memory
python dgm_sample.py -c DGM.pt --exp generate_trainset  --gpu_nums 2 -i 0 --s_step 32 --part 0 --bs 25

Process the generate trainset into single npy files for HEM training

python generate_nyps_to_single_case.py

Train

We prepare all the necessary data of training DGM at: https://huggingface.co/Lhaippp/DMHomo/tree/main

1. BasesHomo_small.npy -> Pseudo Homography Lables
2. Contant-Aware-DeepH-Data.zip & Train_List.txt -> CAHomo Dataset
3. Trainset_Masks_HomoGAN.zip -> Pseudo Dominant Plane Masks

# the download scripts are: 
from huggingface_hub import hf_hub_download

hf_hub_download(repo_id="Lhaippp/DMHomo", filename="BasesHomo_small.npy", local_dir="/root/test/trainset/Contant-Aware-DeepH-Data/Data/Train")

Please follow the script in CAHomo to prepare the train data. And set the path at class UnHomoTrainData(Dataset).

# to set the training config
accelerate config

# start training!
accelerate launch demo.py

the default setting is bs=128 & lr=5e-4 that requires about 300G GPU memory. We also test the bs=48 & lr=1e-4 that can be runned on several 2080Tis, some qualitative results are:

  • where the first column is generated pairs: [im1, im2]
  • the second column is warped pairs: [im1, warpPerspective(im2, condition_homo)]
  • the third column is condition dominant plane mask
  • the last column is condition_homo (homography -> optical flow -> rgb flow)

Homography Estimator Module (HEM)

we use accelerate for multi-GPUs processing

We prepare the weights of HEM at: https://huggingface.co/Lhaippp/DMHomo/blob/main/HEM.pth

# Please set the path of 'CA-Homo Dataset' by [test_data_dir] in HEM/experiments
accelerate launch hem_evaluate.py --model_dir HEM/experiments --restore_file HEM.pth -ow

For training HEM

cd HEM
# configs for stage-1 are set at HEM/experiments/params.json
accelerate launch train.py --model_dir experiments

# once finished the stage-1, you could obtain a pretrain model, e.g., 'val-best-0.38.pt'
# configs for stage-2 are set at HEM/experiments/stage2/params.json
accelerate launch train.py --model_dir experiments/stage2 --resume -ow --restore_file experiments/val-best-0.38.pt

Thanks

Our framework builds upon previous benchmarking works; we offer our gratitude to them, including, but not limited to:

Citation

If you use this code or ideas from our paper for your research, please cite our paper:

@article{li2024dmhomo,
  title={DMHomo: Learning Homography with Diffusion Models},
  author={Li, Haipeng and Jiang, Hai and Luo, Ao and Tan, Ping and Fan, Haoqiang and Zeng, Bing and Liu, Shuaicheng},
  journal={ACM Transactions on Graphics},
  year={2024},
  publisher={ACM New York, NY}
}

About

[ToG 2024]: DMHomo: Learning Homography with Diffusion Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages