Skip to content

lincc-frameworks/nested-pandas

Repository files navigation

nested-pandas

Template

PyPI Conda

GitHub Workflow Status codecov Read the Docs benchmarks

An extension of pandas for efficient representation of nested associated datasets.

Nested-Pandas extends the pandas package with tooling and support for nested dataframes packed into values of top-level dataframe columns. Pyarrow is used internally to aid in scalability and performance.

Nested-Pandas allows data like this:

pandas dataframes

To instead be represented like this:

nestedframe

Where the nested data is represented as nested dataframes:

   # Each row of "object_nf" now has it's own sub-dataframe of matched rows from "source_df"
   object_nf.loc[0]["nested_sources"]

sub-dataframe

Allowing powerful and straightforward operations, like:

   # Compute the mean flux for each row of "object_nf"
   import numpy as np
   object_nf.reduce(np.mean, "nested_sources.flux")

using reduce

Nested-Pandas is motivated by time-domain astronomy use cases, where we see typically two levels of information, information about astronomical objects and then an associated set of N measurements of those objects. Nested-Pandas offers a performant and memory-efficient package for working with these types of datasets.

Core advantages being:

  • hierarchical column access
  • efficient packing of nested information into inputs to custom user functions
  • avoiding costly groupby operations

This is a LINCC Frameworks project - find more information about LINCC Frameworks here.

Acknowledgements

This project is supported by Schmidt Sciences.

About

Efficient Pandas representation for nested associated datasets.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 8