|
6 | 6 | import numpy as np
|
7 | 7 | import pandas as pd
|
8 | 8 | import pyarrow as pa
|
9 |
| -from nested_pandas import NestedDtype |
| 9 | +from nested_pandas import NestedDtype, NestedFrame, datasets |
10 | 10 |
|
11 | 11 |
|
12 | 12 | class AssignSingleDfToNestedSeries:
|
@@ -98,3 +98,91 @@ def time_run(self):
|
98 | 98 | def peakmem_run(self):
|
99 | 99 | """Benchmark the memory usage of changing a single nested series element."""
|
100 | 100 | self.run()
|
| 101 | + |
| 102 | + |
| 103 | +class NestedFrameAddNested: |
| 104 | + """Benchmark the NestedFrame.add_nested function""" |
| 105 | + |
| 106 | + n_base = 100 |
| 107 | + layer_size = 1000 |
| 108 | + base_nf = NestedFrame |
| 109 | + layer_nf = NestedFrame |
| 110 | + |
| 111 | + def setup(self): |
| 112 | + """Set up the benchmark environment""" |
| 113 | + # use provided seed, "None" acts as if no seed is provided |
| 114 | + randomstate = np.random.RandomState(seed=1) |
| 115 | + |
| 116 | + # Generate base data |
| 117 | + base_data = {"a": randomstate.random(self.n_base), "b": randomstate.random(self.n_base) * 2} |
| 118 | + self.base_nf = NestedFrame(data=base_data) |
| 119 | + |
| 120 | + layer_data = { |
| 121 | + "t": randomstate.random(self.layer_size * self.n_base) * 20, |
| 122 | + "flux": randomstate.random(self.layer_size * self.n_base) * 100, |
| 123 | + "band": randomstate.choice(["r", "g"], size=self.layer_size * self.n_base), |
| 124 | + "index": np.arange(self.layer_size * self.n_base) % self.n_base, |
| 125 | + } |
| 126 | + self.layer_nf = NestedFrame(data=layer_data).set_index("index") |
| 127 | + |
| 128 | + def run(self): |
| 129 | + """Run the benchmark.""" |
| 130 | + self.base_nf.add_nested(self.layer_nf, "nested") |
| 131 | + |
| 132 | + def time_run(self): |
| 133 | + """Benchmark the runtime of adding a nested layer""" |
| 134 | + self.run() |
| 135 | + |
| 136 | + def peakmem_run(self): |
| 137 | + """Benchmark the memory usage of adding a nested layer""" |
| 138 | + self.run() |
| 139 | + |
| 140 | + |
| 141 | +class NestedFrameReduce: |
| 142 | + """Benchmark the NestedFrame.reduce function""" |
| 143 | + |
| 144 | + n_base = 100 |
| 145 | + n_nested = 1000 |
| 146 | + nf = NestedFrame |
| 147 | + |
| 148 | + def setup(self): |
| 149 | + """Set up the benchmark environment""" |
| 150 | + self.nf = datasets.generate_data(self.n_base, self.n_nested) |
| 151 | + |
| 152 | + def run(self): |
| 153 | + """Run the benchmark.""" |
| 154 | + self.nf.reduce(np.mean, "nested.flux") |
| 155 | + |
| 156 | + def time_run(self): |
| 157 | + """Benchmark the runtime of applying the reduce function""" |
| 158 | + self.run() |
| 159 | + |
| 160 | + def peakmem_run(self): |
| 161 | + """Benchmark the memory usage of applying the reduce function""" |
| 162 | + self.run() |
| 163 | + |
| 164 | + |
| 165 | +class NestedFrameQuery: |
| 166 | + """Benchmark the NestedFrame.query function""" |
| 167 | + |
| 168 | + n_base = 100 |
| 169 | + n_nested = 1000 |
| 170 | + nf = NestedFrame |
| 171 | + |
| 172 | + def setup(self): |
| 173 | + """Set up the benchmark environment""" |
| 174 | + self.nf = datasets.generate_data(self.n_base, self.n_nested) |
| 175 | + |
| 176 | + def run(self): |
| 177 | + """Run the benchmark.""" |
| 178 | + |
| 179 | + # Apply nested layer query |
| 180 | + self.nf = self.nf.query("nested.band == 'g'") |
| 181 | + |
| 182 | + def time_run(self): |
| 183 | + """Benchmark the runtime of applying the two queries""" |
| 184 | + self.run() |
| 185 | + |
| 186 | + def peakmem_run(self): |
| 187 | + """Benchmark the memory usage of applying the two queries""" |
| 188 | + self.run() |
0 commit comments