Skip to content
forked from nmslib/hnswlib

Header-only C++/python library for fast approximate nearest neighbors

License

Notifications You must be signed in to change notification settings

linzhangbin/hnswlib

 
 

Repository files navigation

Hnswlib - fast approximate nearest neighbor search

Header-only C++ HNSW implementation with python bindings. Paper code for the HNSW 200M SIFT experiment

Highlights:

  1. Lightweight, header-only, no dependencies other than C++ 11.
  2. Interfaces for C++, python and R (https://github.com/jlmelville/rcpphnsw).
  3. Has full support for incremental index construction. Has support for element deletions (currently, without actual freeing of the memory).
  4. Can work with custom user defined distances (C++).
  5. Significantly less memory footprint and faster build time compared to current nmslib's implementation.

Description of the algorithm parameters can be found in ALGO_PARAMS.md.

Python bindings

Supported distances:

Distance parameter Equation
Squared L2 'l2' d = sum((Ai-Bi)^2)
Inner product 'ip' d = 1.0 - sum(Ai*Bi))
Cosine similarity 'cosine' d = 1.0 - sum(Ai*Bi) / sqrt(sum(Ai*Ai) * sum(Bi*Bi))

Note that inner product is not an actual metric. An element can be closer to some other element than to itself.

For other spaces use the nmslib library https://github.com/nmslib/nmslib.

short API description

  • hnswlib.Index(space, dim) creates a non-initialized index an HNSW in space space with integer dimension dim.

Index methods:

  • init_index(max_elements, ef_construction = 200, M = 16, random_seed = 100) initializes the index from with no elements.

    • max_elements defines the maximum number of elements that can be stored in the structure(can be increased/shrunk).
    • ef_construction defines a construction time/accuracy trade-off (see ALGO_PARAMS.md).
    • M defines tha maximum number of outgoing connections in the graph (ALGO_PARAMS.md).
  • add_items(data, data_labels, num_threads = -1) - inserts the data(numpy array of vectors, shape:N*dim) into the structure.

    • labels is an optional N-size numpy array of integer labels for all elements in data.
    • num_threads sets the number of cpu threads to use (-1 means use default).
    • Thread-safe with other add_items calls, but not with knn_query.
  • mark_deleted(data_label) - marks the element as deleted, so it will be ommited from search results.

  • resize_index(new_size) - changes the maximum capacity of the index. Not thread safe with add_items and knn_query.

  • set_ef(ef) - sets the query time accuracy/speed trade-off, defined by the ef parameter ( ALGO_PARAMS.md).

  • knn_query(data, k = 1, num_threads = -1) make a batch query for k closests elements for each element of the

    • data (shape:N*dim). Returns a numpy array of (shape:N*k).
    • num_threads sets the number of cpu threads to use (-1 means use default).
    • Thread-safe with other knn_query calls, but not with add_items.
  • load_index(path_to_index, max_elements = 0) loads the index from persistence to the uninitialized index.

    • max_elements(optional) resets the maximum number of elements in the structure.
  • save_index(path_to_index) saves the index from persistence.

  • set_num_threads(num_threads) set the default number of cpu threads used during data insertion/querying.

  • get_items(ids) - returns a numpy array (shape:N*dim) of vectors that have integer identifiers specified in ids numpy vector (shape:N).

  • get_ids_list() - returns a list of all elements' ids.

Python bindings examples

import hnswlib
import numpy as np

dim = 128
num_elements = 10000

# Generating sample data
data = np.float32(np.random.random((num_elements, dim)))
data_labels = np.arange(num_elements)

# Declaring index
p = hnswlib.Index(space = 'l2', dim = dim) # possible options are l2, cosine or ip

# Initing index - the maximum number of elements should be known beforehand
p.init_index(max_elements = num_elements, ef_construction = 200, M = 16)

# Element insertion (can be called several times):
p.add_items(data, data_labels)

# Controlling the recall by setting ef:
p.set_ef(50) # ef should always be > k

# Query dataset, k - number of closest elements (returns 2 numpy arrays)
labels, distances = p.knn_query(data, k = 1)

An example with updates after serialization/deserialization:

import hnswlib
import numpy as np

dim = 16
num_elements = 10000

# Generating sample data
data = np.float32(np.random.random((num_elements, dim)))

# We split the data in two batches:
data1 = data[:num_elements // 2]
data2 = data[num_elements // 2:]

# Declaring index
p = hnswlib.Index(space='l2', dim=dim)  # possible options are l2, cosine or ip

# Initing index
# max_elements - the maximum number of elements (capacity). Will throw an exception if exceeded
# during insertion of an element.
# The capacity can be increased by saving/loading the index, see below.
#
# ef_construction - controls index search speed/build speed tradeoff
#
# M - is tightly connected with internal dimensionality of the data. Strongly affects memory consumption (~M)
# Higher M leads to higher accuracy/run_time at fixed ef/efConstruction

p.init_index(max_elements=num_elements//2, ef_construction=100, M=16)

# Controlling the recall by setting ef:
# higher ef leads to better accuracy, but slower search
p.set_ef(10)

# Set number of threads used during batch search/construction
# By default using all available cores
p.set_num_threads(4)


print("Adding first batch of %d elements" % (len(data1)))
p.add_items(data1)

# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data1, k=1)
print("Recall for the first batch:", np.mean(labels.reshape(-1) == np.arange(len(data1))), "\n")

# Serializing and deleting the index:
index_path='first_half.bin'
print("Saving index to '%s'" % index_path)
p.save_index("first_half.bin")
del p

# Reiniting, loading the index
p = hnswlib.Index(space='l2', dim=dim)  # the space can be changed - keeps the data, alters the distance function.

print("\nLoading index from 'first_half.bin'\n")

# Increase the total capacity (max_elements), so that it will handle the new data
p.load_index("first_half.bin", max_elements = num_elements)

print("Adding the second batch of %d elements" % (len(data2)))
p.add_items(data2)

# Query the elements for themselves and measure recall:
labels, distances = p.knn_query(data, k=1)
print("Recall for two batches:", np.mean(labels.reshape(-1) == np.arange(len(data))), "\n")

Bindings installation

apt-get install -y python-setuptools python-pip
pip3 install pybind11 numpy setuptools
cd python_bindings
python3 setup.py install

Other implementations

200M SIFT test reproduction

To download and extract the bigann dataset:

python3 download_bigann.py

To compile:

cmake .
make all

To run the test on 200M SIFT subset:

./main

The size of the bigann subset (in millions) is controlled by the variable subset_size_milllions hardcoded in sift_1b.cpp.

HNSW example demos

References

Malkov, Yu A., and D. A. Yashunin. "Efficient and robust approximate nearest neighbor search using Hierarchical Navigable Small World graphs." TPAMI, preprint: https://arxiv.org/abs/1603.09320

About

Header-only C++/python library for fast approximate nearest neighbors

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 86.2%
  • Python 13.4%
  • CMake 0.4%