-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
185 lines (154 loc) · 7.02 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import opengjkc as opengjk
from scipy.spatial.transform import Rotation as R
import numpy as np
import pytest
#from IPython import embed
def settol():
return 1e-12
def distance_point_to_line_3D(P1, P2, point):
"""
distance from point to line
"""
return np.linalg.norm(np.cross(P2-P1, P1-point))/np.linalg.norm(P2-P1)
def distance_point_to_plane_3D(P1, P2, P3, point):
"""
Distance from point to plane
"""
return np.abs(np.dot(np.cross(P2-P1, P3-P1) /
np.linalg.norm(np.cross(P2-P1, P3-P1)), point-P2))
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0, -2])
def test_line_point_distance(delta):
line = np.array([[0.1, 0.2, 0.3], [0.5, 0.8, 0.7]], dtype=np.float64)
point_on_line = line[0] + 0.27*(line[1]-line[0])
normal = np.cross(line[0], line[1])
point = point_on_line + delta * normal
distance = opengjk.gjk(line, point)
actual_distance = distance_point_to_line_3D(
line[0], line[1], point)
print(distance, actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1, 1e-12, 0])
def test_line_line_distance(delta):
line = np.array([[-0.5, -0.7, -0.3], [1, 2, 3]], dtype=np.float64)
point_on_line = line[0] + 0.38*(line[1]-line[0])
normal = np.cross(line[0], line[1])
point = point_on_line + delta * normal
line_2 = np.array([point, [2, 5, 6]], dtype=np.float64)
distance = opengjk.gjk(line, line_2)
actual_distance = distance_point_to_line_3D(
line[0], line[1], line_2[0])
print(distance, actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1**(3*i) for i in range(6)])
def test_tri_distance(delta):
tri_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=np.float64)
tri_2 = np.array([[1, delta, 0], [3, 1.2, 0], [
1, 1, 0]], dtype=np.float64)
P1 = tri_1[2]
P2 = tri_1[1]
point = tri_2[0]
actual_distance = distance_point_to_line_3D(P1, P2, point)
distance = opengjk.gjk(tri_1, tri_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
#embed()
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [0.1*0.1**(3*i) for i in range(6)])
def test_quad_distance2d(delta):
quad_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
[1, 1, 0]], dtype=np.float64)
quad_2 = np.array([[0, 1+delta, 0], [2, 2, 0],
[2, 4, 0], [4, 4, 0]], dtype=np.float64)
P1 = quad_1[2]
P2 = quad_1[3]
point = quad_2[0]
actual_distance = distance_point_to_line_3D(P1, P2, point)
distance = opengjk.gjk(quad_1, quad_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [1*0.5**(3*i) for i in range(7)])
def test_tetra_distance_3d(delta):
tetra_1 = np.array([[0, 0, 0.2], [1, 0, 0.1], [0, 1, 0.3],
[0, 0, 1]], dtype=np.float64)
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
[0.5, 0.3, -delta]], dtype=np.float64)
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
tetra_1[2], tetra_2[3])
distance = opengjk.gjk(tetra_1, tetra_2)
print("Computed distance ", distance, "Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol() ))
@pytest.mark.parametrize("delta", [(-1)**i*np.sqrt(2)*0.1**(3*i)
for i in range(6)])
def test_tetra_collision_3d(delta):
tetra_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0],
[0, 0, 1]], dtype=np.float64)
tetra_2 = np.array([[0, 0, -3], [1, 0, -3], [0, 1, -3],
[0.5, 0.3, -delta]], dtype=np.float64)
actual_distance = distance_point_to_plane_3D(tetra_1[0], tetra_1[1],
tetra_1[2], tetra_2[3])
distance = opengjk.gjk(tetra_1, tetra_2)
if delta < 0:
assert(np.isclose(distance, 0, atol=settol()))
else:
print("Computed distance ", distance,
"Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol()))
@pytest.mark.parametrize("delta", [0, -0.1, -0.49, -0.51])
def test_hex_collision_3d(delta):
hex_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [1, 1, 0],
[0, 0, 1], [1, 0, 1], [0, 1, 1], [1, 1, 1]],
dtype=np.float64)
P0 = np.array([1.5+delta, 1.5+delta, 0.5], dtype=np.float64)
P1 = np.array([2, 2, 1], dtype=np.float64)
P2 = np.array([2, 1.25, 0.25], dtype=np.float64)
P3 = P1 + P2 - P0
quad_1 = np.array([P0, P1, P2, P3], dtype=np.float64)
n = (np.cross(quad_1[1]-quad_1[0], quad_1[2]-quad_1[0]) /
np.linalg.norm(
np.cross(quad_1[1]-quad_1[0],
quad_1[2]-quad_1[0])))
quad_2 = quad_1 + n
hex_2 = np.zeros((8, 3), dtype=np.float64)
hex_2[:4, :] = quad_1
hex_2[4:, :] = quad_2
actual_distance = np.linalg.norm(
np.array([1, 1, P0[2]], dtype=np.float64)-hex_2[0])
distance = opengjk.gjk(hex_1, hex_2)
if P0[0] < 1:
assert(np.isclose(distance, 0, atol=settol()))
else:
print("Computed distance ", distance,
"Actual distance ", actual_distance)
assert(np.isclose(distance, actual_distance, atol=settol()))
@pytest.mark.parametrize("c0", [0, 1, 2, 3])
@pytest.mark.parametrize("c1", [0, 1, 2, 3])
def test_cube_distance(c0, c1):
cubes = [np.array([[-1, -1, -1], [1, -1, -1], [-1, 1, -1], [1, 1, -1],
[-1, -1, 1], [1, -1, 1], [-1, 1, 1], [1, 1, 1]],
dtype=np.float64)]
r = R.from_euler('z', 45, degrees=True)
cubes.append(r.apply(cubes[0]))
r = R.from_euler('y', np.arctan2(1.0, np.sqrt(2)))
cubes.append(r.apply(cubes[1]))
r = R.from_euler('y', 45, degrees=True)
cubes.append(r.apply(cubes[0]))
dx = cubes[c0][:,0].max() - cubes[c1][:,0].min()
cube0 = cubes[c0]
for delta in [1e8, 1.0, 1e-4, 1e-8, 1e-12]:
cube1 = cubes[c1] + np.array([dx + delta, 0, 0])
distance = opengjk.gjk(cube0, cube1)
print(distance, delta)
assert(np.isclose(distance, delta))
def test_random_objects():
for i in range(1, 8):
for j in range(1, 8):
for k in range(1000):
arr1 = np.random.rand(i, 3)
arr2 = np.random.rand(j, 3)
opengjk.gjk(arr1, arr2)
def test_large_random_objects():
for i in range(1, 8):
for j in range(1, 8):
for k in range(1000):
arr1 = 10000.0*np.random.rand(i, 3)
arr2 = 10000.0*np.random.rand(j, 3)
opengjk.gjk(arr1, arr2)