Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Stablehlo] Improve the lowering of pool op in stablehlo #3259

Merged
merged 4 commits into from
Apr 30, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 28 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -6637,6 +6637,34 @@ def Torch_AtenNativeLayerNormOp : Torch_Op<"aten.native_layer_norm", [
}];
}

def Torch_AtenMaxPool1dOp : Torch_Op<"aten.max_pool1d", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::max_pool1d : (Tensor, int[], int[], int[], int[], bool) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
AnyTorchListOfTorchIntType:$kernel_size,
AnyTorchListOfTorchIntType:$stride,
AnyTorchListOfTorchIntType:$padding,
AnyTorchListOfTorchIntType:$dilation,
Torch_BoolType:$ceil_mode
);
let results = (outs
AnyTorchOptionalTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenMaxPool1dOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 6, 1);
}
void AtenMaxPool1dOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 6, 1);
}
}];
}

def Torch_AtenMaxPool2dOp : Torch_Op<"aten.max_pool2d", [
AllowsTypeRefinement,
HasValueSemantics,
Expand Down
279 changes: 167 additions & 112 deletions lib/Conversion/TorchToStablehlo/Pooling.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ static Value createInitialValueForAtenPoolingOp(Operation *op, Type elementTy,
auto constType = RankedTensorType::get({}, elementTy);
// Avg pooling
if (isa<AtenAvgPool1dOp, AtenAdaptiveAvgPool2dOp, AtenAvgPool2dOp,
AtenCumsumOp>(op)) {
AtenAvgPool3dOp, AtenCumsumOp>(op)) {
if (isa<mlir::FloatType>(elementTy)) {
auto constAttr = DenseElementsAttr::get(
constType, {APFloat::getZero(
Expand All @@ -54,7 +54,8 @@ static Value createInitialValueForAtenPoolingOp(Operation *op, Type elementTy,
}

// Max pooling
if (isa<AtenMaxPool2dOp, AtenMaxPool2dWithIndicesOp>(op)) {
if (isa<AtenMaxPool1dOp, AtenMaxPool2dOp, AtenMaxPool3dOp,
AtenMaxPool2dWithIndicesOp>(op)) {
if (isa<mlir::FloatType>(elementTy)) {
auto constAttr = DenseElementsAttr::get(
constType,
Expand All @@ -75,101 +76,6 @@ static Value createInitialValueForAtenPoolingOp(Operation *op, Type elementTy,
return nullptr;
}

// AtenMaxPool2dOp
template <>
LogicalResult ConvertAtenOp<AtenMaxPool2dOp>::matchAndRewrite(
AtenMaxPool2dOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Value input = adaptor.getSelf();
auto inputTy = cast<RankedTensorType>(input.getType());
auto inputElemTy = inputTy.getElementType();

auto inputRank = inputTy.getRank();
auto outTy =
cast<RankedTensorType>(getTypeConverter()->convertType(op.getType()));

if (inputRank <= 2) {
return op.emitError(
"max_pooling2d only supports inputs with rank higher than 2");
}
SmallVector<int64_t, 2> padding, kernelSize, stride, dilation;
bool ceilMode = false;

if (!(matchPattern(op.getKernelSize(),
m_TorchListOfConstantInts(kernelSize)))) {
return rewriter.notifyMatchFailure(
op, "non-const int kernel size unsupported!");
}
if (!(matchPattern(op.getStride(), m_TorchListOfConstantInts(stride)))) {
return rewriter.notifyMatchFailure(op, "non-const int stride unsupported!");
}
if (!(matchPattern(op.getPadding(), m_TorchListOfConstantInts(padding)))) {
return rewriter.notifyMatchFailure(op,
"non-const int padding unsupported!");
}
if (!(matchPattern(op.getDilation(), m_TorchListOfConstantInts(dilation)))) {
return rewriter.notifyMatchFailure(op,
"non-const int dilation unsupported!");
}
if (!(matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))) {
return rewriter.notifyMatchFailure(op,
"non-const bool ceil_mode unsupported!");
}

// prepend 1 to kernelSize, stride, dilation until they are of same rank as
// input
SmallVector<int64_t> stablehloStride(inputRank, 1);
SmallVector<int64_t> stablehloDilation(inputRank, 1);
SmallVector<int64_t> stablehloKernelSize(inputRank, 1);
SmallVector<int64_t> stablehloPadding(inputRank * 2, 0);
std::copy(dilation.begin(), dilation.end(),
stablehloDilation.begin() + inputRank - 2);
std::copy(stride.begin(), stride.end(),
stablehloStride.begin() + inputRank - 2);
std::copy(kernelSize.begin(), kernelSize.end(),
stablehloKernelSize.begin() + inputRank - 2);

Value initVal = createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);

stablehloPadding[stablehloPadding.size() - 4] = padding[0];
stablehloPadding[stablehloPadding.size() - 3] = padding[0];
stablehloPadding[stablehloPadding.size() - 2] = padding[1];
stablehloPadding[stablehloPadding.size() - 1] = padding[1];

auto windowDimensions = rewriter.getDenseI64ArrayAttr(stablehloKernelSize);
auto windowStrides = rewriter.getDenseI64ArrayAttr(stablehloStride);
DenseI64ArrayAttr baseDilations;
auto windowDilations = rewriter.getDenseI64ArrayAttr(stablehloDilation);
DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
rewriter.getI64Type()),
stablehloPadding);
auto reduceWindowOp = rewriter.create<stablehlo::ReduceWindowOp>(
op->getLoc(), outTy, input, initVal, windowDimensions, windowStrides,
baseDilations, windowDilations, pad);

Block &block = reduceWindowOp.getBody().emplaceBlock();

auto blockArgumentTy = RankedTensorType::get({}, inputElemTy);
block.addArgument(blockArgumentTy, op->getLoc());
block.addArgument(blockArgumentTy, op->getLoc());

auto *firstArg = block.args_begin();
auto secondArg = block.args_rbegin();

{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);
Value result =
rewriter.create<stablehlo::MaxOp>(op->getLoc(), *firstArg, *secondArg);
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), result);
}

rewriter.replaceOp(op, reduceWindowOp.getResults());
return success();
}

// AtenMaxPool2dWithIndicesOp
template <>
LogicalResult ConvertAtenOp<AtenMaxPool2dWithIndicesOp>::matchAndRewrite(
Expand Down Expand Up @@ -356,6 +262,129 @@ LogicalResult ConvertAtenOp<AtenMaxPool2dWithIndicesOp>::matchAndRewrite(
return success();
}

namespace {
template <typename AtenOpT, int Dim>
class ConvertAtenMaxPoolOp : public ConvertAtenOp<AtenOpT> {
public:
using ConvertAtenOp<AtenOpT>::ConvertAtenOp;
using OpAdaptor = typename AtenOpT::Adaptor;
LogicalResult
matchAndRewrite(AtenOpT op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Value input = adaptor.getSelf();
auto inputTy = cast<RankedTensorType>(input.getType());
auto inputElemTy = inputTy.getElementType();
auto inputRank = inputTy.getRank();
auto outTy = cast<RankedTensorType>(
ConvertAtenOp<AtenOpT>::getTypeConverter()->convertType(op.getType()));

if (inputRank <= Dim) {
return op.emitError(
"max_pooling1d/2d only supports inputs with rank higher than 1/2");
}
SmallVector<int64_t, Dim> padding, kernelSize, stride, dilation;
bool ceilMode = false;

if (!(matchPattern(op.getKernelSize(),
m_TorchListOfConstantInts(kernelSize)))) {
return rewriter.notifyMatchFailure(
op, "non-const int kernel size unsupported!");
}
if (!(matchPattern(op.getStride(), m_TorchListOfConstantInts(stride)))) {
return rewriter.notifyMatchFailure(op,
"non-const int stride unsupported!");
}
if (!(matchPattern(op.getPadding(), m_TorchListOfConstantInts(padding)))) {
return rewriter.notifyMatchFailure(op,
"non-const int padding unsupported!");
}
if (!(matchPattern(op.getDilation(),
m_TorchListOfConstantInts(dilation)))) {
return rewriter.notifyMatchFailure(op,
"non-const int dilation unsupported!");
}
if (!(matchPattern(op.getCeilMode(), m_TorchConstantBool(&ceilMode)))) {
return rewriter.notifyMatchFailure(
op, "non-const bool ceil_mode unsupported!");
}

if (stride.empty()) {
stride = kernelSize;
}

// prepend 1 to kernelSize, stride, dilation until they are of same rank
// as input
SmallVector<int64_t> stablehloStride(inputRank, 1);
SmallVector<int64_t> stablehloDilation(inputRank, 1);
SmallVector<int64_t> stablehloKernelSize(inputRank, 1);
SmallVector<int64_t> stablehloPadding(inputRank * 2, 0);
std::copy(dilation.begin(), dilation.end(),
stablehloDilation.begin() + inputRank - Dim);
std::copy(stride.begin(), stride.end(),
stablehloStride.begin() + inputRank - Dim);
std::copy(kernelSize.begin(), kernelSize.end(),
stablehloKernelSize.begin() + inputRank - Dim);

Value initVal =
createInitialValueForAtenPoolingOp(op, inputElemTy, rewriter);

if (Dim == 1) {
stablehloPadding[stablehloPadding.size() - 2] = padding[0];
stablehloPadding[stablehloPadding.size() - 1] = padding[0];
} else if (Dim == 2) {
stablehloPadding[stablehloPadding.size() - 4] = padding[0];
stablehloPadding[stablehloPadding.size() - 3] = padding[0];
stablehloPadding[stablehloPadding.size() - 2] = padding[1];
stablehloPadding[stablehloPadding.size() - 1] = padding[1];
} else if (Dim == 3) {
stablehloPadding[stablehloPadding.size() - 6] = padding[0];
stablehloPadding[stablehloPadding.size() - 5] = padding[0];
stablehloPadding[stablehloPadding.size() - 4] = padding[1];
stablehloPadding[stablehloPadding.size() - 3] = padding[1];
stablehloPadding[stablehloPadding.size() - 2] = padding[2];
stablehloPadding[stablehloPadding.size() - 1] = padding[2];
} else {
assert(false && "Unsupported pooling dimension");
}
auto windowDimensions = rewriter.getDenseI64ArrayAttr(stablehloKernelSize);
auto windowStrides = rewriter.getDenseI64ArrayAttr(stablehloStride);
DenseI64ArrayAttr baseDilations;
auto windowDilations = rewriter.getDenseI64ArrayAttr(stablehloDilation);

DenseIntElementsAttr pad = DenseIntElementsAttr::get(
RankedTensorType::get(
{static_cast<int64_t>(inputRank), static_cast<int64_t>(2)},
rewriter.getI64Type()),
stablehloPadding);

auto reduceWindowOp = rewriter.create<stablehlo::ReduceWindowOp>(
op->getLoc(), outTy, input, initVal, windowDimensions, windowStrides,
baseDilations, windowDilations, pad);

Block &block = reduceWindowOp.getBody().emplaceBlock();

// Add bb argument
auto blockArgumentType = RankedTensorType::get({}, inputElemTy);
block.addArgument(blockArgumentType, op->getLoc());
block.addArgument(blockArgumentType, op->getLoc());
auto *firstArg = block.args_begin();
auto secondArg = block.args_rbegin();

{
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&block);

Value result = rewriter.create<stablehlo::MaxOp>(op->getLoc(), *firstArg,
*secondArg);
rewriter.create<stablehlo::ReturnOp>(op->getLoc(), result);
}

rewriter.replaceOp(op, reduceWindowOp.getResults());
return success();
}
};
} // namespace

namespace {
template <typename AtenOpT, int Dim>
class ConvertAtenAvgPoolOp : public ConvertAtenOp<AtenOpT> {
Expand All @@ -375,8 +404,8 @@ class ConvertAtenAvgPoolOp : public ConvertAtenOp<AtenOpT> {
auto outShape = outTy.getShape();

if (inputRank <= Dim) {
return op.emitError(
"avg_pooling1d/2d only supports inputs with rank higher than 1/2");
return op.emitError("avg_pooling1d/2d/3d only supports inputs with rank "
"higher than 1/2/3");
}
SmallVector<int64_t, Dim> padding, kernelSize, stride;
bool ceilMode = false;
Expand Down Expand Up @@ -405,6 +434,10 @@ class ConvertAtenAvgPoolOp : public ConvertAtenOp<AtenOpT> {
op, "non-const bool count_include_pad unsupported!");
}

if (stride.empty()) {
stride = kernelSize;
}

if constexpr (std::is_same<AtenOpT, AtenAvgPool2dOp>()) {
if (succeeded(checkNotNone(rewriter, op, op.getDivisorOverride())))
return rewriter.notifyMatchFailure(
Expand All @@ -425,11 +458,20 @@ class ConvertAtenAvgPoolOp : public ConvertAtenOp<AtenOpT> {
if (Dim == 1) {
stablehloPadding[stablehloPadding.size() - 2] = padding[0];
stablehloPadding[stablehloPadding.size() - 1] = padding[0];
} else {
} else if (Dim == 2) {
stablehloPadding[stablehloPadding.size() - 4] = padding[0];
stablehloPadding[stablehloPadding.size() - 3] = padding[0];
stablehloPadding[stablehloPadding.size() - 2] = padding[1];
stablehloPadding[stablehloPadding.size() - 1] = padding[1];
} else if (Dim == 3) {
stablehloPadding[stablehloPadding.size() - 6] = padding[0];
stablehloPadding[stablehloPadding.size() - 5] = padding[0];
stablehloPadding[stablehloPadding.size() - 4] = padding[1];
stablehloPadding[stablehloPadding.size() - 3] = padding[1];
stablehloPadding[stablehloPadding.size() - 2] = padding[2];
stablehloPadding[stablehloPadding.size() - 1] = padding[2];
} else {
assert(false && "Unsupported pooling dimension");
}

Value initVal =
Expand Down Expand Up @@ -474,10 +516,17 @@ class ConvertAtenAvgPoolOp : public ConvertAtenOp<AtenOpT> {
divisor =
hlo::getConstTensor<int64_t>(rewriter, op, {kernelSize[0]}, {})
.value();
} else {
} else if (Dim == 2) {
divisor = hlo::getConstTensor<int64_t>(
rewriter, op, {kernelSize[0] * kernelSize[1]}, {})
.value();
} else if (Dim == 3) {
divisor = hlo::getConstTensor<int64_t>(
rewriter, op,
{kernelSize[0] * kernelSize[1] * kernelSize[2]}, {})
.value();
} else {
assert(false && "Unsupported pooling dimension");
}
divisor = hlo::promoteType(rewriter, op.getLoc(), divisor, outTy);
DenseI64ArrayAttr bcastDimensions;
Expand Down Expand Up @@ -611,22 +660,28 @@ void mlir::torch::torch_to_stablehlo::populatePoolingOpPatternsAndLegality(
TypeConverter &typeConverter, RewritePatternSet &patterns,
ConversionTarget &target, const TorchToStablehloOptions &options) {
MLIRContext *context = patterns.getContext();
target.addIllegalOp<AtenAvgPool1dOp>();
patterns.add<ConvertAtenOp<AtenAvgPool1dOp>>(typeConverter, context, options);
target.addIllegalOp<AtenMaxPool2dOp>();
patterns.add<ConvertAtenOp<AtenMaxPool2dOp>>(typeConverter, context, options);
target.addIllegalOp<AtenAvgPool2dOp>();
patterns.add<ConvertAtenOp<AtenAvgPool2dOp>>(typeConverter, context, options);
target.addIllegalOp<AtenMaxPool2dWithIndicesOp>();
patterns.add<ConvertAtenOp<AtenMaxPool2dWithIndicesOp>>(typeConverter,
context, options);
target.addIllegalOp<AtenCumsumOp>();
patterns.add<ConvertAtenOp<AtenCumsumOp>>(typeConverter, context, options);
#define INSERT_ATEN_POOLING_PATTERN(AtenOp) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context, options)
INSERT_ATEN_POOLING_PATTERN(AtenMaxPool2dWithIndicesOp);
INSERT_ATEN_POOLING_PATTERN(AtenCumsumOp);
#undef INSERT_ATEN_POOLING_PATTERN

#define INSERT_ATEN_MAXPOOL_PATTERN(AtenOp, Dim) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenMaxPoolOp<AtenOp, Dim>>(typeConverter, context, \
options)
INSERT_ATEN_MAXPOOL_PATTERN(AtenMaxPool1dOp, 1);
INSERT_ATEN_MAXPOOL_PATTERN(AtenMaxPool2dOp, 2);
INSERT_ATEN_MAXPOOL_PATTERN(AtenMaxPool3dOp, 3);
#undef INSERT_ATEN_MAXPOOL_PATTERN

#define INSERT_ATEN_AVGPOOL_PATTERN(AtenOp, Dim) \
target.addIllegalOp<AtenOp>(); \
patterns.add<ConvertAtenAvgPoolOp<AtenOp, Dim>>(typeConverter, context, \
options)
INSERT_ATEN_AVGPOOL_PATTERN(AtenAvgPool1dOp, 1);
INSERT_ATEN_AVGPOOL_PATTERN(AtenAvgPool2dOp, 2);
INSERT_ATEN_AVGPOOL_PATTERN(AtenAvgPool3dOp, 3);
#undef INSERT_ATEN_AVGPOOL_PATTERN
}
Loading
Loading