Skip to content

Commit

Permalink
unumpy.average: init
Browse files Browse the repository at this point in the history
Ref: #38
  • Loading branch information
doronbehar committed Oct 25, 2024
1 parent 604df40 commit 3114177
Show file tree
Hide file tree
Showing 4 changed files with 162 additions and 0 deletions.
1 change: 1 addition & 0 deletions CHANGES.rst
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ Fixes:

- fix `readthedocs` configuration so that the build passes (#254)
- Add `unumpy.covariance_matrix`: A vectorized variant of the pure Python function `covariance_matrix` (#265)
- Add `unumpy.average` to calculate uncertainties aware average (#264)

3.2.2 2024-July-08
-----------------------
Expand Down
23 changes: 23 additions & 0 deletions doc/numpy_guide.rst
Original file line number Diff line number Diff line change
Expand Up @@ -144,6 +144,29 @@ functions is available in the documentation for :mod:`uncertainties.umath`.
.. index::
pair: testing and operations (in arrays); NaN

Uncertainties aware average
---------------------------

If you have measured a certain value multiple times, with a different
uncertainty every measurement. Averaging over the results in a manner aware of
the different uncertainties, is not trivial. The function ``unumpy.average()``
does that:

>>> measurements = numpy.array([2.1, 2.0, 2.05, 2.08, 2.02])
>>> stds = numpy.array([0.05, 0.03, 0.04, 0.06, 0.05])
>>> arr = unumpy.uarray(measurements, stds)
>>> unumpy.average(arr)
2.03606+/-0.019

Note how that function gives a value different from numpy's ``mean`` function:

>>> numpy.mean(arr)
2.050+/-0.019

If you have an array with correlated values, the covariances will be considered
as well. You can also specify an ``axes`` argument, to specify a certain axis
or a tuple of axes upon which to average the result.

NaN testing and NaN-aware operations
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Expand Down
69 changes: 69 additions & 0 deletions tests/test_unumpy.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
import pytest

try:
import numpy
except ImportError:
Expand Down Expand Up @@ -300,3 +302,70 @@ def test_array_comparisons():
# For matrices, 1D arrays are converted to 2D arrays:
mat = unumpy.umatrix([1, 2], [1, 4])
assert numpy.all((mat == [mat[0, 0], 4]) == [True, False])


class TestAverage:
arr1d = unumpy.uarray(
[2.1, 2.0, 2.05, 2.08, 2.02],
[0.05, 0.03, 0.04, 0.06, 0.05],
)

def __init__(self):
sigma2d = 0.3
means2d = np.linspace(4, 20, num=50).reshape(5, 10)
self.arr2d = unumpy.uarray(
np.random.normal(loc=means, scale=sigma2d),
np.random.uniform(low=0, high=sigma2d),
)
meansNd = np.random.rand(4, 7, 5, 2, 10, 14) + 10
self.arrNd = unumpy.uarray(
meansNd, np.random.uniform(low=0, high=0.2, size=meansNd.shape)
)

def test_average_type_check():
with pytest.raises(ValueError):
unumpy.average(numpy.array(["bla"]))

def test_average_example():
"""Tests the example from the docs."""
avg = unumpy.average(self.arr1d)
assert np.isclose(avg.n, 2.0360612043435338)
assert np.isclose(avg.s, 0.018851526708200846)

@pytest.mark.parametrize("invalid_axis", [1, 2, 3])
def test_average1d_invalid_axes(invalid_axis):
with pytest.raises(ValueError):
unumpy.average(self.arr1d, axes=invalid_axis)

@pytest.mark.parametrize("invalid_axis", [2, 3])
def test_average2d_invalid_axes(invalid_axis):
with pytest.raises(ValueError):
unumpy.average(self.arr1d, axes=invalid_axis)

@pytest.mark.parametrize(
"expected_shape, axis_argument",
[
((), None),
# According to the linspace reshape in __init__
((5,), 1),
((5,), (1,)),
((10,), 0),
((10,), (0,)),
],
)
def test_average2d_shape(expected_shape, axis_argument):
assert unumpy.average(self.arr2d, axes=axis_argument).shape == expected_shape

@pytest.mark.parametrize(
"expected_shape, axis_argument",
[
((), None),
# According to random.rand() argument in __init__
((4, 5, 10), (1, 3, 5)),
((10,), (0, 1, 2, 3, 4, 6)),
((14,), (0, 1, 2, 3, 4, 5)),
((7, 2), (0, 2, 4, 5, 6)),
],
)
def test_averageNd_shape(expected_shape, axis_argument):
assert unumpy.average(self.arrNd, axes=axis_argument).shape == expected_shape
69 changes: 69 additions & 0 deletions uncertainties/unumpy/core.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,10 +31,79 @@
"nominal_values",
"covariance_matrix",
"std_devs",
"average",
# Classes:
"matrix",
]


def _average(arr):
"""
The real implementation of average, for 1D arrays.
"""
assert arr.ndim == 1
cov_matrix = covariance_matrix(arr)
weights = numpy.diagonal(cov_matrix) ** -1
weights_sum = weights.sum()
return uarray(
(nominal_values(arr) * weights).sum() / weights_sum,
numpy.sqrt(
numpy.einsum(
"i,ij,j",
weights,
cov_matrix,
weights,
)
) / weights_sum,
)

def average(arr, axes=None):
"""
Return a weighted averaged along with a weighted mean over a certain axis
or a axes. The formulas implemented by this are:
$$ \\mu = \frac{\\sum_i (x_i/\\sigma_i^2)}{\\sum_i \\sigma_i^{-2}}$$
$$\\sigma_\\mu = \\frac{\\sqrt{\\sum_{i,j} \\sigma_i^{-2} \\sigma_j^{-2} \\cdot Cov(x_i, x_j)}}{\\sum_i \\sigma_i^{-2}}$$
Where of course $Cov(x_i, x_i) = \\sigma_i^2$.
By default, (when ``axes=None``), it flattens the given array first and
then applies the above equations. When axes is a list or tuple, it applies
the same formula over each axis in a loop, and hence correlations between
values in different axes are not taken into account.
"""
# NOTE regarding the above implementation disclaimer: Ideally we could have
# taken the (2N)-D shaped covariance_matrix(arr) and worked with that, but
# it is not very clear how to do that truely correctly.
arr = np.asanyarray(arr)
if axes is None:
axes = [0]
arr = arr.flatten()
# The following sanity checks on axes similar to what Numpy 2.x's
# lib.array_utils.normalize_axis_tuple do.
elif not isinstance(axes, [tuple, list]):
axes = [operator.index(axes)]
else:
axes = tuple(axes)
if len(set(axes)) != len(axes):
raise ValueError("repeated axis found in axes argument")
# This one is not checked by np.lib.array_utils.normalize_axis_tuple
if max(axes) >= arr.ndim:
raise ValueError(
f"Cannot average over an inexistent axis {max(axes)} >= arr.ndim = "
f"{arr.ndim}"
)
if not isinstance(arr.flat[0], core.Variable):
raise ValueError(
"unumpy.average is meant to operate upon numpy arrays of ufloats, "
"not pure numpy arrays"
)
for axis in sorted(axes, reverse=True):
arr = numpy.apply_over_axis(_average, axis, arr)
return arr


###############################################################################
# Utilities:

Expand Down

0 comments on commit 3114177

Please sign in to comment.