This repository contains related algorithms in prediction fields:
- LaneGCN
- LaneGCN checkpoints
- Vectornet
- Vectornet checkpoints
- TNT
- TNT checkpoints
- mmtransformer
- mmtransformer checkpoints
Method | ADE_1 | FDE_1 | MR_1 | mADE | mFDE | mMR |
---|---|---|---|---|---|---|
LaneGCN | 1.34 | 2.95 | 0.49 | 0.71 | 1.08 | 0.10 |
VectorNet | 1.54 | 3.44 | 0.57 | - | - | - |
- LaneGCN
- More lightweight data preprocessing(official need more 40G+ memory)
- Optimized part of GCN attention module
- Add a module to supervise predict angles
- Easy to distribute training
- VectorNet
- Use transformer instead of GNNs
- Support to convert onnx, easy to deploy on edge devices
- Easy to distribute training
# for lanegcn:
$ cd ./data
$ python lanegcn_preprocess.py -i /Argoverse/train -m train
$ python lanegcn_preprocess.py -i /Argoverse/val -m val
$ python train_ddp.py -f ./config/Config_Lanegcn.yaml
# for vectornet:
$ python train_ddp.py -f ./config/Config_VectorNet.yaml
For details about how to configure related algorithms, see examples.
requirements.txt