Instructions for running algorithms:
- X -> dataset
- reduceTo -> number of dimensions to reduce
[ XReduced, eigenvals, eigenvecs ] = pca( X, reduceTo )
- X_train -> training dataset
- expected_train -> training dataset labels
- X_test -> test dataset
- expected_test -> test dataset labels
- X_val -> validation dataset
- expected_val -> validation dataset labels
- num_epochs -> stop criteria, number of epochs
- validation_checks -> stop criteria, number of validations
- num_neurons_hid -> number of neurons in hidden layer
- num_neurons_output -> number of neurons in output layer
- learning_rate -> Gradient Descent learning rate
- momentum -> Gradient Descent with momentum constant
- learning_rate_incr -> factor of increasing adaptive learning rate
- learning_rate_dec -> factor of decreasing adaptive learning rate
[ W1_epochs, W2_epochs, B1_epochs, B2_epochs, mse_train, mse_test, mse_val ] =
backpropagation( X_train, expected_train, X_test, expected_test, X_val, expected_val,
num_epochs, validation_checks, num_neurons_hid, num_neurons_output,
learning_rate, momentum, learning_rate_incr, learning_rate_dec)
javac Point.java Dbscan.java
java Dbscan <eps> <minPoints> <path_to_dataset>
- eps -> neighborhood radius
- minPoints -> minimum points to create a core cluster
- path_to_dataset -> path to a txt file separated by \t