Skip to content

lucasbrunialti/DataMiningProject

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

58 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DataMiningProject

Instructions for running algorithms:

PCA

  • X -> dataset
  • reduceTo -> number of dimensions to reduce

[ XReduced, eigenvals, eigenvecs ] = pca( X, reduceTo )

MLP

  • X_train -> training dataset
  • expected_train -> training dataset labels
  • X_test -> test dataset
  • expected_test -> test dataset labels
  • X_val -> validation dataset
  • expected_val -> validation dataset labels
  • num_epochs -> stop criteria, number of epochs
  • validation_checks -> stop criteria, number of validations
  • num_neurons_hid -> number of neurons in hidden layer
  • num_neurons_output -> number of neurons in output layer
  • learning_rate -> Gradient Descent learning rate
  • momentum -> Gradient Descent with momentum constant
  • learning_rate_incr -> factor of increasing adaptive learning rate
  • learning_rate_dec -> factor of decreasing adaptive learning rate

[ W1_epochs, W2_epochs, B1_epochs, B2_epochs, mse_train, mse_test, mse_val ] = backpropagation( X_train, expected_train, X_test, expected_test, X_val, expected_val, num_epochs, validation_checks, num_neurons_hid, num_neurons_output, learning_rate, momentum, learning_rate_incr, learning_rate_dec)

DBSCAN

Compile

javac Point.java Dbscan.java

Running

java Dbscan <eps> <minPoints> <path_to_dataset>

  • eps -> neighborhood radius
  • minPoints -> minimum points to create a core cluster
  • path_to_dataset -> path to a txt file separated by \t

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published