-
Notifications
You must be signed in to change notification settings - Fork 19
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
enable flash attention for robotics transformer, to remove memory bot…
…tleneck due to lengthened actions sequences
- Loading branch information
1 parent
2975c1a
commit 5d7d65a
Showing
4 changed files
with
179 additions
and
38 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,149 @@ | ||
from functools import wraps | ||
from packaging import version | ||
|
||
import torch | ||
from torch import nn, einsum | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, reduce | ||
|
||
from functools import wraps | ||
from packaging import version | ||
from collections import namedtuple | ||
|
||
import torch | ||
from torch import nn, einsum | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, reduce | ||
|
||
# constants | ||
|
||
FlashAttentionConfig = namedtuple('FlashAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient']) | ||
|
||
# helpers | ||
|
||
def once(fn): | ||
called = False | ||
@wraps(fn) | ||
def inner(x): | ||
nonlocal called | ||
if called: | ||
return | ||
called = True | ||
return fn(x) | ||
return inner | ||
|
||
print_once = once(print) | ||
|
||
# helpers | ||
|
||
def exists(val): | ||
return val is not None | ||
|
||
def default(val, d): | ||
return val if exists(val) else d | ||
|
||
def maybe_reduce_mask_and(*maybe_masks): | ||
maybe_masks = [*filter(exists, maybe_masks)] | ||
|
||
if len(maybe_masks) == 0: | ||
return None | ||
|
||
mask, *rest_masks = maybe_masks | ||
|
||
for rest_mask in rest_masks: | ||
mask = mask & rest_mask | ||
|
||
return mask | ||
|
||
# main class | ||
|
||
class Attend(nn.Module): | ||
def __init__( | ||
self, | ||
dropout = 0., | ||
flash = False, | ||
flash_config: dict = dict( | ||
enable_flash = True, | ||
enable_math = True, | ||
enable_mem_efficient = True | ||
) | ||
): | ||
super().__init__() | ||
self.dropout = dropout | ||
self.attn_dropout = nn.Dropout(dropout) | ||
|
||
self.flash = flash | ||
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above' | ||
|
||
if flash: | ||
print_once('using memory efficient attention') | ||
|
||
self.flash_config = flash_config | ||
|
||
def flash_attn(self, q, k, v, mask = None, attn_mask = None): | ||
_, heads, q_len, dim_head, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device | ||
|
||
# Check if mask exists and expand to compatible shape | ||
# The mask is B L, so it would have to be expanded to B H N L | ||
|
||
if exists(mask): | ||
mask = mask.expand(-1, heads, q_len, -1) | ||
|
||
mask = maybe_reduce_mask_and(mask, attn_mask) | ||
|
||
# pytorch 2.0 flash attn: q, k, v, mask, dropout, softmax_scale | ||
|
||
with torch.backends.cuda.sdp_kernel(**self.flash_config): | ||
out = F.scaled_dot_product_attention( | ||
q, k, v, | ||
attn_mask = mask, | ||
dropout_p = self.dropout if self.training else 0. | ||
) | ||
|
||
return out | ||
|
||
def forward(self, q, k, v, mask = None, attn_mask = None): | ||
""" | ||
einstein notation | ||
b - batch | ||
h - heads | ||
n, i, j - sequence length (base sequence length, source, target) | ||
d - feature dimension | ||
""" | ||
|
||
q_len, k_len, device = q.shape[-2], k.shape[-2], q.device | ||
|
||
scale = q.shape[-1] ** -0.5 | ||
|
||
if exists(mask) and mask.ndim != 4: | ||
mask = rearrange(mask, 'b j -> b 1 1 j') | ||
|
||
if self.flash: | ||
return self.flash_attn(q, k, v, mask = mask, attn_mask = attn_mask) | ||
|
||
# similarity | ||
|
||
sim = einsum(f"b h i d, b h j d -> b h i j", q, k) * scale | ||
|
||
# key padding mask | ||
|
||
if exists(mask): | ||
sim = sim.masked_fill(~mask, -torch.finfo(sim.dtype).max) | ||
|
||
# attention mask | ||
|
||
if exists(attn_mask): | ||
sim = sim.masked_fill(~attn_mask, -torch.finfo(sim.dtype).max) | ||
|
||
# attention | ||
|
||
attn = sim.softmax(dim=-1) | ||
attn = self.attn_dropout(attn) | ||
|
||
# aggregate values | ||
|
||
out = einsum(f"b h i j, b h j d -> b h i d", attn, v) | ||
|
||
return out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters