-
-
Notifications
You must be signed in to change notification settings - Fork 3.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4b9a02d
commit da950e6
Showing
2 changed files
with
181 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
from math import sqrt | ||
|
||
import torch | ||
from torch import nn, einsum | ||
import torch.nn.functional as F | ||
|
||
from einops import rearrange, repeat | ||
from einops.layers.torch import Rearrange | ||
|
||
# helpers | ||
|
||
def cast_tuple(val, num): | ||
return val if isinstance(val, tuple) else (val,) * num | ||
|
||
def conv_output_size(image_size, kernel_size, stride, padding = 0): | ||
return int(((image_size - kernel_size + (2 * padding)) / stride) + 1) | ||
|
||
# classes | ||
|
||
class PreNorm(nn.Module): | ||
def __init__(self, dim, fn): | ||
super().__init__() | ||
self.norm = nn.LayerNorm(dim) | ||
self.fn = fn | ||
def forward(self, x, **kwargs): | ||
return self.fn(self.norm(x), **kwargs) | ||
|
||
class FeedForward(nn.Module): | ||
def __init__(self, dim, hidden_dim, dropout = 0.): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Linear(dim, hidden_dim), | ||
nn.GELU(), | ||
nn.Dropout(dropout), | ||
nn.Linear(hidden_dim, dim), | ||
nn.Dropout(dropout) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
class Attention(nn.Module): | ||
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | ||
super().__init__() | ||
inner_dim = dim_head * heads | ||
project_out = not (heads == 1 and dim_head == dim) | ||
|
||
self.heads = heads | ||
self.scale = dim_head ** -0.5 | ||
|
||
self.attend = nn.Softmax(dim = -1) | ||
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | ||
|
||
self.to_out = nn.Sequential( | ||
nn.Linear(inner_dim, dim), | ||
nn.Dropout(dropout) | ||
) if project_out else nn.Identity() | ||
|
||
def forward(self, x): | ||
b, n, _, h = *x.shape, self.heads | ||
qkv = self.to_qkv(x).chunk(3, dim = -1) | ||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv) | ||
|
||
dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale | ||
|
||
attn = self.attend(dots) | ||
|
||
out = einsum('b h i j, b h j d -> b h i d', attn, v) | ||
out = rearrange(out, 'b h n d -> b n (h d)') | ||
return self.to_out(out) | ||
|
||
class Transformer(nn.Module): | ||
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | ||
super().__init__() | ||
self.layers = nn.ModuleList([]) | ||
for _ in range(depth): | ||
self.layers.append(nn.ModuleList([ | ||
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | ||
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | ||
])) | ||
def forward(self, x): | ||
for attn, ff in self.layers: | ||
x = attn(x) + x | ||
x = ff(x) + x | ||
return x | ||
|
||
# depthwise convolution, for pooling | ||
|
||
class DepthWiseConv2d(nn.Module): | ||
def __init__(self, dim_in, dim_out, kernel_size, padding, stride, bias = True): | ||
super().__init__() | ||
self.net = nn.Sequential( | ||
nn.Conv2d(dim_in, dim_in, kernel_size = kernel_size, padding = padding, groups = dim_in, stride = stride, bias = bias), | ||
nn.Conv2d(dim_in, dim_out, kernel_size = 1, bias = bias) | ||
) | ||
def forward(self, x): | ||
return self.net(x) | ||
|
||
# pooling layer | ||
|
||
class Pool(nn.Module): | ||
def __init__(self, dim): | ||
super().__init__() | ||
self.downsample = DepthWiseConv2d(dim, dim * 2, kernel_size = 3, stride = 2, padding = 1) | ||
self.cls_ff = nn.Linear(dim, dim * 2) | ||
|
||
def forward(self, x): | ||
cls_token, tokens = x[:, :1], x[:, 1:] | ||
|
||
cls_token = self.cls_ff(cls_token) | ||
|
||
tokens = rearrange(tokens, 'b (h w) c -> b c h w', h = int(sqrt(tokens.shape[1]))) | ||
tokens = self.downsample(tokens) | ||
tokens = rearrange(tokens, 'b c h w -> b (h w) c') | ||
|
||
return torch.cat((cls_token, tokens), dim = 1) | ||
|
||
# main class | ||
|
||
class PiT(nn.Module): | ||
def __init__( | ||
self, | ||
*, | ||
image_size, | ||
patch_size, | ||
num_classes, | ||
dim, | ||
depth, | ||
heads, | ||
mlp_dim, | ||
dim_head = 64, | ||
dropout = 0., | ||
emb_dropout = 0. | ||
): | ||
super().__init__() | ||
assert image_size % patch_size == 0, 'Image dimensions must be divisible by the patch size.' | ||
assert isinstance(depth, tuple), 'depth must be a tuple of integers, specifying the number of blocks before each downsizing' | ||
heads = cast_tuple(heads, len(depth)) | ||
|
||
patch_dim = 3 * patch_size ** 2 | ||
|
||
self.to_patch_embedding = nn.Sequential( | ||
nn.Unfold(kernel_size = patch_size, stride = patch_size // 2), | ||
Rearrange('b c n -> b n c'), | ||
nn.Linear(patch_dim, dim) | ||
) | ||
|
||
output_size = conv_output_size(image_size, patch_size, patch_size // 2) | ||
num_patches = output_size ** 2 | ||
|
||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | ||
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | ||
self.dropout = nn.Dropout(emb_dropout) | ||
|
||
layers = [] | ||
|
||
for ind, (layer_depth, layer_heads) in enumerate(zip(depth, heads)): | ||
not_last = ind < (len(depth) - 1) | ||
|
||
layers.append(Transformer(dim, layer_depth, layer_heads, dim_head, mlp_dim, dropout)) | ||
|
||
if not_last: | ||
layers.append(Pool(dim)) | ||
dim *= 2 | ||
|
||
self.layers = nn.Sequential( | ||
*layers, | ||
nn.LayerNorm(dim), | ||
nn.Linear(dim, num_classes) | ||
) | ||
|
||
def forward(self, img): | ||
x = self.to_patch_embedding(img) | ||
b, n, _ = x.shape | ||
|
||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b = b) | ||
x = torch.cat((cls_tokens, x), dim=1) | ||
x += self.pos_embedding | ||
x = self.dropout(x) | ||
|
||
return self.layers(x) |