Releases: lululxvi/deepxde
Releases · lululxvi/deepxde
DeepXDE v1.13.1
This is a bugfix release, fixing the bug of dde.data.PDEOperatorCartesianProd
introduced in v1.13.0.
We also support Python 3.12 and require PyTorch>=2.0.0.
Thanks to all the contributors to this release!
DeepXDE v1.13.0
Areas of improvement
- Refactor and improve regularizers for backends TensorFlow 1.x/2.x and paddle
- Improve compatibility with NumPy 2
dde.model.train
anddde.model.compile
support verbose- Backend PyTorch: Fix L2 regularizers for
external_trainable_variables
- Backend paddle:
FNN
supports regularization and dropout
New APIs
- Backend PyTorch: Add a new optimizer NNCG
Thanks to all the contributors to this release!
@lululxvi @vl-dud @KangyuWeng @pratikrathore8 @lijialin03 @Jerry-Jzy
DeepXDE v1.12.2
Areas of improvement
- Improve compatibility with NumPy 2
- Bug fix:
dde.data.QuadrupleCartesianProd
- Backend TensorFlow 1.x: Improve DeepONet
- Backend PyTorch: FNN supports regularization
Thanks to all the contributors to this release!
DeepXDE v1.12.1
Areas of improvement
- Add
clear()
for forward-mode autodiff to prevent memory leak - Tensorflow 1.x backend:
DeepONet
supports layer-by-layer dropout rate setting - Bug fix:
SingleOutputStrategy
has unnecessary error checking
New APIs
dde.geometry.Hypercube
supportsuniform_boundary_points
Thanks to all the contributors to this release!
DeepXDE v1.12.0
Areas of improvement
EarlyStopping
callback supports a new argumentstart_from_epoch
- Backend TensorFlow v1/v2: Fix many codes to match the new TensorFlow APIs and Keras 3
- Backend Tensorflow v1:
DeepONet
andDeepONetCartesianProd
support dropout - Backend PyTorch: Fix the L-BFGS code to support PyTorch 2.x
- Backend Paddle: Fix the L-BFGS code
- Backend Paddle:
DeepONetCartesianProd
supports multiple outputs - Backend JAX: Support callback
VariableValue
- Documentation improvements
New APIs
dde.data.PDEOperator
supportsresample_train_points
Thanks to all the contributors to this release!
@bonneted @vnikoofard @vl-dud @tjboise @HydrogenSulfate @agniv-the-marker @lululxvi @lijialin03 @DecoderLiu @anranjiao
DeepXDE v1.11.1
Areas of improvement
- Add 2D interface boundary condition
dde.icbc.Interface2DBC
- Backend JAX: Support loss weights
- Backend JAX: Support
dde.nn.PFNN
- Backend JAX: Support
dde.callbacks.OperatorPredictor
- Backend JAX: Fix input and output transform
- Add new examples in docs
Thanks to all the contributors to this release!
@lululxvi @kuangdai @HydrogenSulfate @bonneted @jdellag @vl-dud @SebastianCobaise
DeepXDE v1.11.0
- DeepXDE stops the support of Python 3.8 from this release.
- Many exciting new functions of automatic differentiation (AD) are added.
Areas of improvement
dde.grad
supports forward-mode AD for backends TensorFlow 1.x and 2.x, PyTorch, JAX. Usedde.config.set_default_autodiff
to select.dde.grad.jacobian
allows bothi
andj
are None- Backend PyTorch: DeepONet supports multiple outputs
New APIs
- Support new AD method in
dde.zcs
: Zero Coordinate Shift (ZCS), see https://arxiv.org/abs/2311.00860
DeepXDE v1.10.1
Areas of improvement
- Refactor
dde.grad
module - Backend TensorFlow 1.x and 2.x:
DeepONet
&DeepONetCartesianProd
support multiple outputs - Backend TensorFlow: Add regularization to
DeepONet
- Backend PyTorch: Bug fix of
MIONet
input_transform
- Backend JAX: Support more PINN examples
- Backend JAX: Bug fix of
dde.grad
DeepXDE v1.10.0
Areas of improvement
dde.geometry.PointCloud
supportsboundary_normal
- Backend pytorch: Allow L-BFGS line search
- Backend pytorch: Update GPU code to support pytorch 2.1.0
DeepXDE v1.9.3
Areas of improvement
- Improve float32/float16 compatibility
- Improve examples and documents
- Backend TensorFlow: Support DeepONet and PI-DeepONet
- Backend PyTorch: Support PI-DeepONet
- Backend PyTorch: Bug fix and support more functions
- Backend Paddle: Support PI-DeepONet
- Backend Paddle: Support batch_size in PointSetBC