Skip to content

lyc0929/OOTDiffusion-train

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Coming soon

Note We have reproduced the other pipeline repro demo

Reproduced Demo

Note The image is generated by the model with 50% training progress repro demo

OOTDiffusion

This repository is copy from the official implementation of OOTDiffusion

🤗 Try out OOTDiffusion (Thanks to ZeroGPU for providing A100 GPUs)

Or try our own demo on RTX 4090 GPUs

OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on [arXiv paper]
Yuhao Xu, Tao Gu, Weifeng Chen, Chengcai Chen
Xiao-i Research

Our model checkpoints trained on VITON-HD (half-body) and Dress Code (full-body) have been released

demo  workflow 

Installation

  1. Clone the repository
git clone https://github.com/levihsu/OOTDiffusion
  1. Create a conda environment and install the required packages
conda create -n ootd python==3.10
conda activate ootd
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt

Inference

  1. Half-body model
cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --scale 2.0 --sample 4
  1. Full-body model

Garment category must be paired: 0 = upperbody; 1 = lowerbody; 2 = dress

cd OOTDiffusion/run
python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --model_type dc --category 2 --scale 2.0 --sample 4

Train

accelerate launch ootd_train.py --load_height 512 --load_width 384 --dataset_list 'train_pairs.txt' --dataset_mode 'train' --batch_size 16 --train_batch_size 16 --num_train_epochs 200

Citation

@article{xu2024ootdiffusion,
  title={OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on},
  author={Xu, Yuhao and Gu, Tao and Chen, Weifeng and Chen, Chengcai},
  journal={arXiv preprint arXiv:2403.01779},
  year={2024}
}

TODO List

  • Paper
  • Gradio demo
  • Inference code
  • Model weights
  • Training code
  • Distributed and Parallel Training code

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published