Skip to content
/ DOS Public

[ICLR 2024] An official PyTorch implementation of paper 'DOS: Diverse Outlier Sampling for Out-of-Distribution Detection'

License

Notifications You must be signed in to change notification settings

lygjwy/DOS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

47ba80f · Jul 2, 2024

History

46 Commits
Mar 4, 2023
Jul 2, 2024
Jul 2, 2024
Mar 4, 2023
Mar 4, 2023
Jul 2, 2024
Jul 2, 2024
Jul 2, 2024
Mar 4, 2023
Jul 2, 2024
Sep 8, 2022
Jul 2, 2024

Repository files navigation


DOS

An official PyTorch implementation of the ICLR 2024 paper
"DOS: Diverse Outlier Sampling for Out-of-Distribution Detection"

   

Get StartedCitation

Get Started

Overview

This repository is an official PyTorch implementation of the ICLR 2024 paper 'DOS: Diverse Outlier Sampling for Out-of-Distribution Detection'. The illustration of our algorithm is shown as below: diagram

Requirements

pip install -r requirements.txt

Training

python train_diverse.py

Evaluation

OODs="svhn lsunc dtd places365_10k tinc lsunr tinr isun"
python detect.py --id cifar100 --ood $OODs --score abs --pretrain /path/to/trained/classifier

Results

diagram

Citation

If you find our repository useful for your research, please consider citing our paper:

@inproceedings{jiang2024dos,
  title={{DOS}: Diverse Outlier Sampling for Out-of-Distribution Detection},
  author={Wenyu Jiang and Hao Cheng and MingCai Chen and Chongjun Wang and Hongxin Wei},
  booktitle={The Twelfth International Conference on Learning Representations},
  year={2024},
  url={https://openreview.net/forum?id=iriEqxFB4y}
}

About

[ICLR 2024] An official PyTorch implementation of paper 'DOS: Diverse Outlier Sampling for Out-of-Distribution Detection'

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages