Skip to content

m0re4u/value-disagreement

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Value Disagreements

Code accompanying the EMNLP2023 long paper "Do Differences in Values Influence Disagreements in Online Discussions?"

Installation

  1. Install the package in developer mode pip install -e .. This will (hopefully) also install the dependencies.
  2. Done ... (well, almost)

You may need to download or initialize models, but you will be prompted for it.

  • You may need to download spacy models
  • You may beed to initialize wandb logging

Folder structure

Here's some guidance on the folder structure. Inside each file should be more information about what the script is intended to do.

value_disagreements

The code for the value extraction, dataset and evaluation metrics. Some classes require external files, listed below:

  • Value Dictionary baseline: find the Refined_dictionary.txt file here and place it in data/.

Notebooks

May contain notebooks made for analysis of generated or scraped data. In our case, contains code for training the TF-IDF baseline for (dis-)agreement prediction.

Data

Folder for storing all data (datasets, user profile information, task instances, survey results). We list a bunch of sources below.

Test

Some unittest functionality, or other sanity checks. Call using python3 -m unittest discover test.

Scripts

Hypothesis testing profiles

Creation of the Bayes Factor scores.

Training agreement

Training and evaluation of models for agreement analysis.

Training Moral Values

Training and evaluation of models for value extractions

Constructing user profiles

Download the experimental data from OSF, which contains the links to the Reddit comments analyzed in our work. You can gather these comments using e.g. PRAW. After obtaining the comment data, you can construct user profiles as follows.

  1. Filter the comments to only include data from relevant subreddits with scripts/filter_subreddits.py. You may need to adjust internal paths and the comment storage format to match that of the RedditBackgroundDataset.
  2. Filter the content to only include English text using scripts/filter_reddit.py.
  3. Create user profiles using scripts/get_user_context.py. Depending on the method you are using for constructing the profiles, you may need to have trained value extraction models (see next section).

Training models

Training Value Extraction models

See python3 scripts/training_moral_values/train.py -h

Training Agreement Analysis models

See python3 scripts/training_agreement/train.py -h

Reproducing paper figures

Below is a (non-exhaustive) list of scripts you need to run to compute the values as presented in the paper.

  • Figure 2: scripts/analyze_profiles.py
  • Table 3: scripts/count_debagreements.py for the most significant value in each subcorpus, and scripts/analyze_value_conflict.py for the mean tau distance.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published