A Helm chart for Magda CSV Semantic Indexer
Homepage: https://github.com/magda-io/magda-csv-semantic-indexer
Kubernetes: >= 1.14.0-0
Repository | Name | Version |
---|---|---|
oci://ghcr.io/magda-io/charts | magda-common | 5.2.0 |
Key | Type | Default | Description |
---|---|---|---|
defaultAdminUserId | string | "00000000-0000-4000-8000-000000000000" |
|
defaultImage.imagePullSecret | bool | false |
|
defaultImage.pullPolicy | string | "IfNotPresent" |
|
defaultImage.repository | string | "ghcr.io/magda-io" |
|
defaultSemanticIndexerConfig.bulkEmbeddingsSize | int | 1 |
|
defaultSemanticIndexerConfig.bulkIndexSize | int | 50 |
|
defaultSemanticIndexerConfig.chunkSizeLimit | int | 512 |
|
defaultSemanticIndexerConfig.chunkSizeLimit | int | 512 |
|
defaultSemanticIndexerConfig.id | string | "csv-semantic-indexer" |
|
defaultSemanticIndexerConfig.indexName | string | "semantic-index" |
|
defaultSemanticIndexerConfig.indexVersion | int | 1 |
|
defaultSemanticIndexerConfig.overlap | int | 50 |
|
defaultSemanticIndexerConfig.overlap | int | 50 |
|
embeddingApiURL | string | "http://magda-embedding-api" |
|
global | object | {"image":{},"rollingUpdate":{},"searchEngine":{"defaultDatasetBucket":"magda-datasets","semanticIndexer":{"indexName":null,"indexVersion":null,"knnVectorFieldConfig":{"compressionLevel":"32x","dimension":768,"efConstruction":100,"efSearch":100,"m":16,"mode":"on_disk","spaceType":"l2"},"numberOfReplicas":0,"numberOfShards":1}}} |
only for providing appropriate default value for helm lint |
global.searchEngine.semanticIndexer.knnVectorFieldConfig.compressionLevel | string | "32x" |
The compression_level mapping parameter selects a quantization encoder that reduces vector memory consumption by the given factor. |
global.searchEngine.semanticIndexer.knnVectorFieldConfig.dimension | int | 768 |
Dimension of the embedding vectors. |
global.searchEngine.semanticIndexer.knnVectorFieldConfig.efConstruction | int | 100 |
Similar to efSearch but used during index construction. Higher values improve search quality but increase index build time. |
global.searchEngine.semanticIndexer.knnVectorFieldConfig.efSearch | int | 100 |
The size of the candidate queue during search. Larger values may improve search quality but increase search latency. |
global.searchEngine.semanticIndexer.knnVectorFieldConfig.m | int | 16 |
The maximum number of graph edges per vector. Higher values increase memory usage but may improve search quality. |
global.searchEngine.semanticIndexer.knnVectorFieldConfig.mode | string | "on_disk" |
Vector workload mode: on_disk or in_memory . |
image.name | string | "magda-csv-semantic-indexer" |
|
minioConfig.defaultDatasetBucket | string | "" |
|
minioConfig.endPoint | string | "magda-minio" |
|
minioConfig.port | int | 9000 |
|
minioConfig.region | string | "" |
|
minioConfig.useSSL | bool | false |
|
opensearchURL | string | "http://opensearch:9200" |
|
port | int | 6305 |
Service port configuration |
resources.limits.cpu | string | "100m" |
|
resources.requests.cpu | string | "50m" |
|
resources.requests.memory | string | "200Mi" |
|
semanticIndexer.bulkEmbeddingsSize | int | nil |
number of string we request embedding api to process in one request |
semanticIndexer.bulkIndexSize | int | nil |
Number of documents we send to OpenSearch for bulk processing in a single request |
semanticIndexer.chunkSizeLimit | int | nil |
The maximum number of tokens in a single chunk. |
semanticIndexer.id | string | "" |
Semantic indexer ID |
semanticIndexer.indexName | string | nil |
index name |
semanticIndexer.indexVersion | int | nil |
index version |
semanticIndexer.overlap | int | nil |
The number of overlapping tokens between chunks. |
Autogenerated from chart metadata using helm-docs v1.11.0