- ML – Machine Learning – Resources
- Communities
- Tools
- DATASETS
- Audio Feature Extraction
- MODELS
- AUDIO PLUGINS
- MIXING
- Source Seperation – Creating Stems
- Audio Synthesis
- DRUMS
- SYNTHESIS
- Rhythm
- Music Generation
- Max/Msp
- ml-lib – A machine learning library for Max and Pure Data
- FLUCOMA
- SP-Tools - Machine Learning tools for drums and percussion
- MUBU – Max toolbox for multimodal analysis of sound and motion, sound synthesis and interactive machine learning
- Gestural Sound Toolkit in Max/MSP for easy and fast Gesture-to-Sound scenario prototyping
- RAVE (###rave-and-nn~)
- General Libraries / API`S
- LABS
- Artists
- TALKS
- COURSES
- EXAMPLES
Table of contents generated with markdown-toc
- https://huggingface.co/
- https://crossminds.ai/
- https://www.fast.ai/
- DagsHub - https://dagshub.com/ DagsHub is a platform for data scientists and machine learning engineers to version their data, models, experiments, and code. It allows you and your team to easily share, review, and reuse your work, providing a GitHub experience for machine learning.
- LAION AI - a non-profit organization to liberate machine learning research, models and datasets
-
NSynth – https://magenta.tensorflow.org/datasets/nsynth https://docs.activeloop.ai/datasets/nsynth-dataset
-
AudioSet – A large-scale dataset ofmanually annotated audio events from YouTube https://research.google.com/audioset/index.html
-
EmoSynth: The Emotional Synthetic Audio Dataset https://zenodo.org/record/3727593#.YV6DrGJBzIU
-
GENERAL ML DATASETS https://paperswithcode.com/datasets
-
open-source audio datasets – https://github.com/DagsHub/audio-datasets
-
Youtube 8M https://research.google.com/youtube8m/
-
Audio Datasets - https://github.com/LAION-AI/audio-dataset
- MTG Essentia – https://essentia.upf.edu/models.html
- Audio Commons Extractor – https://github.com/AudioCommons/ac-audio-extractor
- Librosa - https://librosa.org/doc/latest/index.html
- https://github.com/lucidrains/musiclm-pytorch – Implementation of MusicLM, Google's new SOTA model for music generation using attention networks, in Pytorch
- https://github.com/lucidrains/audiolm-pytorch – Implementation of AudioLM, a Language Modeling Approach to Audio Generation out of Google Research, in Pytorch
- GITHUB REPOSITORY This repository contains a collection of resources and papers on Diffusion Models and Score-matching Models https://github.com/heejkoo/Awesome-Diffusion-Models
- Apply Denoising Diffusion Probabilistic Models using the new Hugging Face diffusers package to synthesize music instead of images – https://github.com/teticio/audio-diffusion
- Unconditional audio generation using diffusion models, in PyTorch https://github.com/archinetai/audio-diffusion-pytorch
- DDSP-VST – https://magenta.tensorflow.org/ddsp-vst
- RAVE VST - https://forum.ircam.fr/projects/detail/rave-vst/
- Download Build - https://github.com/acids-ircam/rave_vst/actions
- Steinberg Backbone - https://www.steinberg.net/vst-instruments/backbone/
- MACE AI by Tensorpunk - https://tensorpunk.com/
- ROEX WEBPAGE – https://www.roexaudio.com/
- ROEX & ABLETON LIVE – https://www.roexaudio.com/post/exporting-tracks-or-stems-from-ableton-into-roex-automix
- https://github.com/deezer/spleeter
- Spleeter for Max – https://github.com/diracdeltas/spleeter4max#spleeter-for-max
Realtime Neutral Audio Synthesis
- https://forum.ircam.fr/projects/detail/acids-projects/
- https://acids-ircam.github.io/cached_conv/
- https://caillonantoine.github.io/2021/11/18/rave.html
- https://www.youtube.com/watch?v=o09BSf9zP-0&t=982s
- RAVE with embedded Systems – https://www.youtube.com/watch?v=jAIRf4nGgYI
- BLOG ABOUT DrumGAN –https://sites.google.com/view/drumgan/p%C3%A1gina-principal
- DrumGAN VST Site – https://cslmusicteam.sony.fr/drumgan-vst/
- DrumGAN IMPLEMENTATION – Steiberg Backbone - https://www.steinberg.net/vst-instruments/backbone/
Raw Audio Score-based Generative Modeling for Controllable High-resolution Drum Sound Synthesis
DDSP-based Singing Vocoders: A New Subtractive-based Synthesizer and A Comprehensive Evaluation https://github.com/YatingMusic/ddsp-singing-vocoders/
Multi-instrument Music Synthesis with Spectrogram Diffusion https://github.com/magenta/music-spectrogram-diffusion
Audioldm – Text to Audio Generation – https://huggingface.co/spaces/haoheliu/audioldm-text-to-audio-generation
- https://github.com/uberduck-ai/uberduck-ml-dev
- https://app.uberduck.ai/editor#mode=tts-basic&voice=jayz
- Max for Live(M4L) Rhythm generator using Variational Autoencoder(VAE) - M4L.RhythmVAE
- MusicGen: a simple and controllable model for music generation – https://github.com/facebookresearch/audiocraft
- MusicLM: Generating Music From Text – https://google-research.github.io/seanet/musiclm/examples/
- RIFFUSION: Stable Diffusion for Audio – https://www.riffusion.com/
- MUSIKA – Fast Infinite Waveform Music Generation – https://github.com/marcoppasini/musika
- MUBERT - create a new form of adaptive music with the help of AI – https://mubert.com/
- https://github.com/irllabs/ml-lib
- https://www.benjamindaysmith.com/ml-machine-learning-toolkit-in-max
- https://rodrigoconstanzo.com/2022/07/sp-tools-machine-learning-tools-for-drums-and-percussion-alpha/
- https://github.com/rconstanzo/sp-tools
MUBU – Max toolbox for multimodal analysis of sound and motion, sound synthesis and interactive machine learning
- https://forum.ircam.fr/projects/detail/mubu/
- https://cycling74.com/articles/content-you-need-mubu
- https://ircam-ismm.github.io/max-msp/mubu.html#recording-playing-analyzing-and-visualizing-multimodal-data
- A ranked list of awesome machine learning Python libraries
- https://github.com/ml-tooling/best-of-ml-python
- Magenta - An open source research project exploring the role of machine learning as a tool in the creative process.
- librosa is a python package for music and audio analysis. It provides the building blocks necessary to create music information retrieval systems
- jukebox, a neural net that generates music
- ACIDS – Artificial Creative Intelligence and Data Science
- Sony Computer Science Laboratories – https://csl.sony.fr/
- Artificial Creative Intelligence and Data Science (ACIDS) group is part of the RepMus team at IRCAM laboratory - https://acids.ircam.fr/
- Centre for Digital Music – Queen Mary University of London - https://c4dm.eecs.qmul.ac.uk/
- Music Technology Group – Universitat Pompeu Fabra in Barcelona – https://www.upf.edu/web/mtg
- RTNEURAL – A lightweight neural network inferencing engine written in C++. This library was designed with the intention of being used in real-time systems, specifically real-time audio processing – https://github.com/jatinchowdhury18/RTNeural
-
Holly Herndon – https://www.artnews.com/art-in-america/interviews/holly-herndon-emily-mcdermott-spawn-ai-1202674301/
-
Mouse on Mars – AAI
-
Aphex Twin & Dave Griffiths
- https://cdm.link/2022/09/free-sample-mashing-with-samplebrain-by-aphex-twin-and-dave-griffiths/?fbclid=IwAR34MQqmvqDLLlsqu4FI1CVqaZPhGYZ2hMvELTNO45em87dCQ1mb4Pi1iNA
- Samplebrain
- https://thentrythis.org/projects/samplebrain/?fbclid=IwAR1qkejBiWrBDLo64-Rjdp0-GDj4hNsGSuV7IgVBApMK_vE2E4cOvM--xaY
- https://gitlab.com/then-try-this/samplebrain
- Neural Audio Synthesis and Restoration with Generative Adversarial Networks-Stefan Lattner-&inCSL https://www.youtube.com/watch?v=IET33sxcaRY
- Interactive Neural Audio Synthesis https://crossminds.ai/video/interactive-neural-audio-synthesis-60774cd8825a3436b95eecdb/
- The Sound of AI by Valerio Velardo – https://www.youtube.com/channel/UCZPFjMe1uRSirmSpznqvJfQ
- Stable Diffusion for Music Video by Tristan Behrens – https://www.youtube.com/watch?v=Oc-NbvUaTzA