Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[3] Prepare support for multiple backmapping protocols #340

Open
wants to merge 4 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions bin/polyply
Original file line number Diff line number Diff line change
Expand Up @@ -162,6 +162,10 @@ def main(): # pylint: disable=too-many-locals,too-many-statements
' when RW fails in first attempt'))

backmap_group = parser_gen_coords.add_argument_group('Options for backmapping')
backmap_group.add_argument('-protocol', dest='protocol', type=str, default='default',
choices=['default'],
help='choose which backmapping protocol to use.')

jan-stevens marked this conversation as resolved.
Show resolved Hide resolved
backmap_group.add_argument('-back_fudge', dest='bfudge', type=float, default=0.4,
help='factor by which to scale the coordinates when backmapping.')

Expand Down
110 changes: 12 additions & 98 deletions polyply/src/backmap.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,25 +22,20 @@
from .generate_templates import find_atoms
from .linalg_functions import rotate_xyz
from .graph_utils import find_connecting_edges
from .orient_by_bonds import orient_by_bonds
"""
Processor implementing a template based back
mapping to lower resolution coordinates for
a meta molecule.
"""
def _norm_matrix(matrix):
norm = np.sum(matrix * matrix)
return norm
norm_matrix = jit(_norm_matrix)

def orient_template(meta_molecule, current_node, template, built_nodes):
def orient_template(meta_molecule, current_node, template, built_nodes, protocol):
"""
Given a `template` and a `node` of a `meta_molecule` at lower resolution
find the bonded interactions connecting the higher resolution template
to its neighbours and orient a template such that the atoms point torwards
the neighbours. In case some nodes of meta_molecule have already been built
at the lower resolution they can be provided as `built_nodes`. In case the
lower resolution is already built the atoms will be oriented torward the lower
resolution atom participating in the bonded interaction.
find the orientation of the template by a chosen protocol.

Available protocols:
- by optimizing bonded interactions (i.e. 'orient_by_bonds' / 'default')

Parameters:
-----------
Expand All @@ -57,92 +52,9 @@ def orient_template(meta_molecule, current_node, template, built_nodes):
dict
the oriented template
"""
# 1. find neighbours at meta_mol level
neighbours = nx.all_neighbors(meta_molecule, current_node)
current_resid = meta_molecule.nodes[current_node]["resid"]

# 2. find connecting atoms at low-res level
edges = []
ref_nodes = []
for node in neighbours:
resid = meta_molecule.nodes[node]["resid"]
edge = find_connecting_edges(meta_molecule,
meta_molecule.molecule,
(node, current_node))
edges += edge
ref_nodes.extend([node]*len(edge))

# 3. build coordinate system
ref_coords = np.zeros((3, len(edges)))
opt_coords = np.zeros((3, len(edges)))

for ndx, edge in enumerate(edges):
for atom in edge:
resid = meta_molecule.molecule.nodes[atom]["resid"]
if resid == current_resid:
current_atom = atom
else:
ref_atom = atom
ref_resid = resid

# the reference residue has already been build so we take the lower
# resolution coordinates as reference
if ref_resid in built_nodes:
atom_name = meta_molecule.molecule.nodes[current_atom]["atomname"]

# record the coordinates of the atom that is rotated
opt_coords[:, ndx] = template[atom_name]

# given the reference atom that already exits translate it to the origin
# of the rotation, this will be the reference point for rotation
ref_coords[:, ndx] = meta_molecule.molecule.nodes[ref_atom]["position"] -\
meta_molecule.nodes[current_node]["position"]

# the reference residue has not been build the CG center is taken as
# reference
else:
atom_name = meta_molecule.molecule.nodes[current_atom]["atomname"]
cg_node = ref_nodes[ndx] #find_atoms(meta_molecule, "resid", ref_resid)[0]

# record the coordinates of the atom that is rotated
opt_coords[:, ndx] = template[atom_name]

# as the reference atom is not built take the cg node as reference point
# for rotation; translate it to origin
ref_coords[:, ndx] = meta_molecule.nodes[cg_node]["position"] -\
meta_molecule.nodes[current_node]["position"]


# 4. optimize the distance between reference nodes and nodes to be placed
# only using rotation of the complete template
#@profile
def target_function(angles):
rotated = rotate_xyz(opt_coords, angles[0], angles[1], angles[2])
diff = rotated - ref_coords
score = norm_matrix(diff)
return score

# choose random starting angles
angles = np.random.uniform(low=0, high=2*np.pi, size=(3))
opt_results = scipy.optimize.minimize(target_function, angles, method='L-BFGS-B',
options={'ftol':0.01, 'maxiter': 400})

# 5. write the template as array and rotate it corrsponding to the result above
template_arr = np.zeros((3, len(template)))
key_to_ndx = {}
for ndx, key in enumerate(template.keys()):
template_arr[:, ndx] = template[key]
key_to_ndx[key] = ndx

angles = opt_results['x']
template_rotated_arr = rotate_xyz(template_arr, angles[0], angles[1], angles[2])

# 6. write the template back as dictionary
template_rotated = {}
for key, ndx in key_to_ndx.items():
template_rotated[key] = template_rotated_arr[:, ndx]

return template_rotated
if protocol == "default":
return orient_by_bonds(meta_molecule, current_node, template, built_nodes)
jan-stevens marked this conversation as resolved.
Show resolved Hide resolved

class Backmap(Processor):
"""
Expand All @@ -151,9 +63,10 @@ class Backmap(Processor):
for the lower resolution molecule associated with the MetaMolecule.
"""

def __init__(self, fudge_coords=0.4, *args, **kwargs):
def __init__(self, fudge_coords=0.4, protocol='default', *args, **kwargs):
super().__init__(*args, **kwargs)
self.fudge_coords = fudge_coords
self.protocol = protocol

def _place_init_coords(self, meta_molecule):
"""
Expand All @@ -176,7 +89,8 @@ def _place_init_coords(self, meta_molecule):

template = orient_template(meta_molecule, node,
meta_molecule.templates[resname],
built_nodes)
built_nodes,
self.protocol)

for atom_high in high_res_atoms:
atomname = meta_molecule.molecule.nodes[atom_high]["atomname"]
Expand Down
5 changes: 4 additions & 1 deletion polyply/src/gen_coords.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ def gen_coords(toppath,
max_force=5*10**4.0,
nrewind=5,
lib=None,
protocol='default',
jan-stevens marked this conversation as resolved.
Show resolved Hide resolved
bfudge=0.4):
"""
Subprogram for coordinate generation which implements the default
Expand Down Expand Up @@ -185,6 +186,8 @@ def gen_coords(toppath,
nrewind: int
Number of residues to trace back when random walk step fails in first
attempt. The default is 5.
protocol: str
Name of the chosen backmapping protocol
bfudge: float
Fudge factor by which to scale the coordinates of the residues
during the backmapping step. 1 will result in to-scale coordinates
Expand Down Expand Up @@ -261,7 +264,7 @@ def gen_coords(toppath,
nrewind=nrewind).run_system(topology.molecules)
ligand_annotator.split_ligands()
LOGGER.info("backmapping to target resolution", type="step")
Backmap(fudge_coords=bfudge).run_system(topology)
Backmap(fudge_coords=bfudge, protocol=protocol).run_system(topology)
# Write output
LOGGER.info("writing output", type="step")
command = ' '.join(sys.argv)
Expand Down
5 changes: 5 additions & 0 deletions polyply/src/linalg_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,11 @@
from scipy.spatial.transform import Rotation
from polyply import jit

def _norm_matrix(matrix):
norm = np.sum(matrix * matrix)
return norm
norm_matrix = jit(_norm_matrix)

def _vector_angle_degrees(v1, v2):
"""
Compute the angle between two vectors
Expand Down
119 changes: 119 additions & 0 deletions polyply/src/orient_by_bonds.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
import numpy as np
import scipy.optimize
import networkx as nx
from .generate_templates import find_atoms
from .linalg_functions import rotate_xyz
from .graph_utils import find_connecting_edges
from .linalg_functions import norm_matrix

def orient_by_bonds(meta_molecule, current_node, template, built_nodes):
"""
Given a `template` and a `node` of a `meta_molecule` at lower resolution
find the bonded interactions connecting the higher resolution template
to its neighbours and orient a template such that the atoms point torwards
the neighbours. In case some nodes of meta_molecule have already been built
at the lower resolution they can be provided as `built_nodes`. In case the
lower resolution is already built the atoms will be oriented torward the lower
resolution atom participating in the bonded interaction.

Parameters:
-----------
meta_molecule: :class:`polyply.src.meta_molecule`
current_node:
node key of the node in meta_molecule to which template referes to
template: dict[collections.abc.Hashable, np.ndarray]
dict of positions referring to the lower resolution atoms of node
built_nodes: list
list of meta_molecule node keys of residues that are already built

Returns:
--------
dict
the oriented template
"""
# 1. find neighbours at meta_mol level
neighbours = nx.all_neighbors(meta_molecule, current_node)
current_resid = meta_molecule.nodes[current_node]["resid"]

# 2. find connecting atoms at low-res level
edges = []
ref_nodes = []
for node in neighbours:
resid = meta_molecule.nodes[node]["resid"]
edge = find_connecting_edges(meta_molecule,
meta_molecule.molecule,
(node, current_node))
edges += edge
ref_nodes.extend([node]*len(edge))

# 3. build coordinate system
ref_coords = np.zeros((3, len(edges)))
opt_coords = np.zeros((3, len(edges)))

for ndx, edge in enumerate(edges):
for atom in edge:
resid = meta_molecule.molecule.nodes[atom]["resid"]
if resid == current_resid:
current_atom = atom
else:
ref_atom = atom
ref_resid = resid

# the reference residue has already been build so we take the lower
# resolution coordinates as reference
if ref_resid in built_nodes:
atom_name = meta_molecule.molecule.nodes[current_atom]["atomname"]

# record the coordinates of the atom that is rotated
opt_coords[:, ndx] = template[atom_name]

# given the reference atom that already exits translate it to the origin
# of the rotation, this will be the reference point for rotation
ref_coords[:, ndx] = meta_molecule.molecule.nodes[ref_atom]["position"] -\
meta_molecule.nodes[current_node]["position"]

# the reference residue has not been build the CG center is taken as
# reference
else:
atom_name = meta_molecule.molecule.nodes[current_atom]["atomname"]
cg_node = ref_nodes[ndx] #find_atoms(meta_molecule, "resid", ref_resid)[0]

# record the coordinates of the atom that is rotated
opt_coords[:, ndx] = template[atom_name]

# as the reference atom is not built take the cg node as reference point
# for rotation; translate it to origin
ref_coords[:, ndx] = meta_molecule.nodes[cg_node]["position"] -\
meta_molecule.nodes[current_node]["position"]


# 4. optimize the distance between reference nodes and nodes to be placed
# only using rotation of the complete template
#@profile
def target_function(angles):
rotated = rotate_xyz(opt_coords, angles[0], angles[1], angles[2])
diff = rotated - ref_coords
score = norm_matrix(diff)
return score

# choose random starting angles
angles = np.random.uniform(low=0, high=2*np.pi, size=(3))
opt_results = scipy.optimize.minimize(target_function, angles, method='L-BFGS-B',
options={'ftol':0.01, 'maxiter': 400})

# 5. write the template as array and rotate it corrsponding to the result above
template_arr = np.zeros((3, len(template)))
key_to_ndx = {}
for ndx, key in enumerate(template.keys()):
template_arr[:, ndx] = template[key]
key_to_ndx[key] = ndx

angles = opt_results['x']
template_rotated_arr = rotate_xyz(template_arr, angles[0], angles[1], angles[2])

# 6. write the template back as dictionary
template_rotated = {}
for key, ndx in key_to_ndx.items():
template_rotated[key] = template_rotated_arr[:, ndx]

return template_rotated