Skip to content

Commit

Permalink
Merge commit 'refs/pull/18/head' of github.com:matatonic/openedai-vision
Browse files Browse the repository at this point in the history
  • Loading branch information
matatonic committed Sep 22, 2024
2 parents 82de3a9 + 53dbbda commit 4833b6e
Show file tree
Hide file tree
Showing 2 changed files with 215 additions and 38 deletions.
174 changes: 174 additions & 0 deletions backend/minimonkey.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@

import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)

# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images, target_aspect_ratio


def dynamic_preprocess2(image, min_num=1, max_num=12, prior_aspect_ratio=None, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
new_target_ratios = []
for i in target_ratios:
if prior_aspect_ratio[0]%i[0] or prior_aspect_ratio[1]%i[1]:
new_target_ratios.append(i)
else:
continue
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, new_target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images

def load_image(image, input_size=448, min_num=1, max_num=12):
image = image.convert('RGB')
transform = build_transform(input_size=input_size)
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values, target_aspect_ratio

def load_image2(image, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None):
image = image.convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values


from vision_qna import *

# mx262/MiniMonkey
import transformers
transformers.logging.set_verbosity_error()

class VisionQnA(VisionQnABase):
model_name: str = "minimonkey"
format: str = '' # phi15-ish
#vision_layers: List[str] = ["vision", "vision_tower", "resampler", "visual", "in_proj","out_proj","c_fc","c_proj"]

def __init__(self, model_id: str, device: str, device_map: str = 'auto', extra_params = {}, format = None):
super().__init__(model_id, device, device_map, extra_params, format)

self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=self.params.get('trust_remote_code', False))
self.model = AutoModel.from_pretrained(**self.params).eval()

self.loaded_banner()

async def stream_chat_with_images(self, request: ImageChatRequest) -> AsyncGenerator[str, None]:
query, history, images, system_message = await prompt_history_images_system_from_messages(
request.messages, img_tok='', url_handler=url_to_image)

# set the max number of tiles in `max_num`
pixel_values, target_aspect_ratio = load_image(images[0], min_num=4, max_num=12)
pixel_values = pixel_values.to(torch.bfloat16).to(self.model.device)
pixel_values2 = load_image2(images[0], min_num=3, max_num=7, target_aspect_ratio=target_aspect_ratio)
pixel_values2 = pixel_values2.to(torch.bfloat16).to(self.model.device)
pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], 0)

generation_config = dict(do_sample=False, max_new_tokens=512)

answer, history = self.model.chat(self.tokenizer, pixel_values, target_aspect_ratio, query, generation_config, history=None, return_history=True)

if isinstance(answer, str):
answer = [answer]

for new_text in answer:
if isinstance(new_text, str):
yield new_text
Loading

0 comments on commit 4833b6e

Please sign in to comment.