-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
matatonic
committed
Apr 28, 2024
1 parent
c8d7fc7
commit bd60163
Showing
8 changed files
with
160 additions
and
7 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
import os | ||
from transformers import AutoTokenizer, AutoModel | ||
from vision_qna import * | ||
import torch | ||
import torchvision.transforms as T | ||
from torchvision.transforms.functional import InterpolationMode | ||
|
||
# OpenGVLab/InternVL-Chat-V1-5 | ||
|
||
IMAGENET_MEAN = (0.485, 0.456, 0.406) | ||
IMAGENET_STD = (0.229, 0.224, 0.225) | ||
|
||
def build_transform(input_size): | ||
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | ||
transform = T.Compose([ | ||
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | ||
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | ||
T.ToTensor(), | ||
T.Normalize(mean=MEAN, std=STD) | ||
]) | ||
return transform | ||
|
||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | ||
best_ratio_diff = float('inf') | ||
best_ratio = (1, 1) | ||
area = width * height | ||
for ratio in target_ratios: | ||
target_aspect_ratio = ratio[0] / ratio[1] | ||
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | ||
if ratio_diff < best_ratio_diff: | ||
best_ratio_diff = ratio_diff | ||
best_ratio = ratio | ||
elif ratio_diff == best_ratio_diff: | ||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | ||
best_ratio = ratio | ||
return best_ratio | ||
|
||
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): | ||
orig_width, orig_height = image.size | ||
aspect_ratio = orig_width / orig_height | ||
|
||
# calculate the existing image aspect ratio | ||
target_ratios = set( | ||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | ||
i * j <= max_num and i * j >= min_num) | ||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | ||
|
||
# find the closest aspect ratio to the target | ||
target_aspect_ratio = find_closest_aspect_ratio( | ||
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | ||
|
||
# calculate the target width and height | ||
target_width = image_size * target_aspect_ratio[0] | ||
target_height = image_size * target_aspect_ratio[1] | ||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | ||
|
||
# resize the image | ||
resized_img = image.resize((target_width, target_height)) | ||
processed_images = [] | ||
for i in range(blocks): | ||
box = ( | ||
(i % (target_width // image_size)) * image_size, | ||
(i // (target_width // image_size)) * image_size, | ||
((i % (target_width // image_size)) + 1) * image_size, | ||
((i // (target_width // image_size)) + 1) * image_size | ||
) | ||
# split the image | ||
split_img = resized_img.crop(box) | ||
processed_images.append(split_img) | ||
assert len(processed_images) == blocks | ||
if use_thumbnail and len(processed_images) != 1: | ||
thumbnail_img = image.resize((image_size, image_size)) | ||
processed_images.append(thumbnail_img) | ||
return processed_images | ||
|
||
|
||
def load_image(image, input_size=448, max_num=6): | ||
#image = Image.open(image_file).convert('RGB') | ||
transform = build_transform(input_size=input_size) | ||
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | ||
pixel_values = [transform(image) for image in images] | ||
pixel_values = torch.stack(pixel_values) | ||
return pixel_values | ||
|
||
|
||
class VisionQnA(VisionQnABase): | ||
model_name: str = "internvl-chat-v1-5" | ||
format: str = "chatml" | ||
|
||
def __init__(self, model_id: str, device: str, device_map: str = 'auto', extra_params = {}, format = None): | ||
super().__init__(model_id, device, device_map, extra_params, format) | ||
|
||
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=self.params.get('trust_remote_code', False)) | ||
self.model = AutoModel.from_pretrained(**self.params).eval() | ||
|
||
self.model.img_context_token_id = self.tokenizer.convert_tokens_to_ids('<IMG_CONTEXT>') | ||
|
||
if self.tokenizer.convert_tokens_to_ids('<|im_end|>') != 0: | ||
self.eos_token_id = self.tokenizer.convert_tokens_to_ids('<|im_end|>') # 92542, InternLM2 | ||
else: | ||
self.eos_token_id = self.tokenizer.eos_token_id | ||
|
||
print(f"Loaded on device: {self.model.device} with dtype: {self.model.dtype}") | ||
|
||
async def chat_with_images(self, request: ImageChatRequest) -> str: | ||
images, prompt = await chatml_prompt_from_messages(request.messages, img_tok='') | ||
|
||
images = [load_image(image).to(self.model.dtype).cuda() for image in images] | ||
if len(images) > 1: | ||
pixel_values = torch.cat(images, dim=0) | ||
else: | ||
pixel_values = images[0] | ||
|
||
default_params = { | ||
'num_beams': 1, | ||
'max_new_tokens': 512, | ||
'do_sample': False, | ||
'eos_token_id': self.eos_token_id, | ||
} | ||
|
||
generation_config = self.get_generation_params(request, default_params) | ||
|
||
del generation_config['use_cache'] | ||
|
||
image_tokens = '<img>' + '<IMG_CONTEXT>' * self.model.num_image_token * pixel_values.shape[0] + '</img>\n' | ||
model_inputs = self.tokenizer(image_tokens + prompt, return_tensors='pt') | ||
input_ids = model_inputs['input_ids'].cuda() | ||
attention_mask = model_inputs['attention_mask'].cuda() | ||
|
||
output = self.model.generate( | ||
pixel_values=pixel_values, | ||
input_ids=input_ids, | ||
attention_mask=attention_mask, | ||
**generation_config, | ||
) | ||
response = self.tokenizer.decode(output[0], skip_special_tokens=True) | ||
|
||
return response.split('<|im_end|>')[0].strip() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters