Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update model.py #2927

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 65 additions & 0 deletions mrcnn/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -2866,3 +2866,68 @@ def denorm_boxes_graph(boxes, shape):
scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0)
shift = tf.constant([0., 0., 1., 1.])
return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32)

############################################################
# Custom Callbacks
############################################################

class MeanAveragePrecisionCallback(Callback):
def __init__(self, train_model: MaskRCNN, inference_model: MaskRCNN, dataset: Dataset,
calculate_map_at_every_X_epoch=5, dataset_limit=None,
verbose=1):
super().__init__()
self.train_model = train_model
self.inference_model = inference_model
self.dataset = dataset
self.calculate_map_at_every_X_epoch = calculate_map_at_every_X_epoch
self.dataset_limit = len(self.dataset.image_ids)
if dataset_limit is not None:
self.dataset_limit = dataset_limit
self.dataset_image_ids = self.dataset.image_ids.copy()

if inference_model.config.BATCH_SIZE != 1:
raise ValueError("This callback only works with the bacth size of 1")

self._verbose_print = print if verbose > 0 else lambda *a, **k: None

def on_epoch_end(self, epoch, logs=None):

if epoch > 2 and (epoch+1)%self.calculate_map_at_every_X_epoch == 0:
self._verbose_print("Calculating mAP...")
self._load_weights_for_model()

mAPs = self._calculate_mean_average_precision()
mAP = np.mean(mAPs)

if logs is not None:
logs["val_mean_average_precision"] = mAP

self._verbose_print("mAP at epoch {0} is: {1}".format(epoch+1, mAP))

super().on_epoch_end(epoch, logs)

def _load_weights_for_model(self):
last_weights_path = self.train_model.find_last()
self._verbose_print("Loaded weights for the inference model (last checkpoint of the train model): {0}".format(
last_weights_path))
self.inference_model.load_weights(last_weights_path,
by_name=True)

def _calculate_mean_average_precision(self):
mAPs = []

# Use a random subset of the data when a limit is defined
np.random.shuffle(self.dataset_image_ids)

for image_id in self.dataset_image_ids[:self.dataset_limit]:
image, image_meta, gt_class_id, gt_bbox, gt_mask = load_image_gt(self.dataset, self.inference_model.config,
image_id, use_mini_mask=False)
molded_images = np.expand_dims(mold_image(image, self.inference_model.config), 0)
results = self.inference_model.detect(molded_images, verbose=0)
r = results[0]
# Compute mAP - VOC uses IoU 0.5
AP, _, _, _ = utils.compute_ap(gt_bbox, gt_class_id, gt_mask, r["rois"],
r["class_ids"], r["scores"], r['masks'])
mAPs.append(AP)

return np.array(mAPs)