Skip to content
/ hsstan Public

An R package for biomarker discovery using Bayesian models implemented in Stan

License

Notifications You must be signed in to change notification settings

mcol/hsstan

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Hierarchical Shrinkage Stan Models for Biomarker Selection

CRAN_Status_Badge CRAN_Downloads_Badge

The hsstan package provides linear and logistic regression models penalized with hierarchical shrinkage priors for selection of biomarkers. Models are fitted with Stan, which allows to perform full Bayesian inference (Carpenter et al. (2017)).

It implements the horseshoe and regularized horseshoe priors (Piironen and Vehtari (2017)), and the projection predictive selection approach to recover a sparse set of predictive biomarkers (Piironen, Paasiniemi and Vehtari (2020)).

The approach is particularly suited to selection from high-dimensional panels of biomarkers, such as those that can be measured by MSMS or similar technologies.

Example

library(hsstan)
data(diabetes)

## if possible, allow using as many cores as cross-validation folds
options(mc.cores=10)

## baseline model with only clinical covariates
hs.base <- hsstan(diabetes, Y ~ age + sex)

## model with additional predictors
hs.biom <- hsstan(diabetes, Y ~ age + sex, penalized=colnames(diabetes)[3:10])
print(hs.biom)
#              mean   sd  2.5% 97.5% n_eff Rhat
# (Intercept)  0.00 0.03 -0.07  0.07  4483    1
# age          0.00 0.04 -0.07  0.08  4706    1
# sex         -0.15 0.04 -0.22 -0.08  5148    1
# bmi          0.33 0.04  0.25  0.41  4228    1
# map          0.20 0.04  0.12  0.28  3571    1
# tc          -0.45 0.25 -0.94  0.04  3713    1
# ldl          0.28 0.20 -0.12  0.68  3674    1
# hdl          0.01 0.12 -0.23  0.25  3761    1
# tch          0.07 0.08 -0.06  0.25  4358    1
# ltg          0.43 0.11  0.22  0.64  3690    1
# glu          0.02 0.03 -0.03  0.10  3034    1

## behaviour of the sampler
sampler.stats(hs.base)
#         accept.stat stepsize divergences treedepth gradients warmup sample
# chain:1      0.9497   0.5723           0         3      6320   0.09   0.08
# chain:2      0.9357   0.6480           0         3      5938   0.09   0.08
# chain:3      0.9455   0.6014           0         3      6112   0.09   0.08
# chain:4      0.9488   0.5932           0         3      6238   0.09   0.08
# all          0.9449   0.6037           0         3     24608   0.36   0.32

sampler.stats(hs.biom)
#         accept.stat stepsize divergences treedepth gradients warmup sample
# chain:1      0.9821   0.0191           0         8    233656   5.04   4.28
# chain:2      0.9891   0.0158           1         8    255994   5.88   4.72
# chain:3      0.9908   0.0143           0         9    274328   5.77   5.14
# chain:4      0.9933   0.0121           0         9    344984   5.98   6.70
# all          0.9888   0.0153           1         9   1108962  22.67  20.84

## approximate leave-one-out cross-validation with Pareto smoothed
## importance sampling
loo(hs.base)
# Computed from 4000 by 442 log-likelihood matrix
#          Estimate   SE
# elpd_loo   -622.4 11.4
# p_loo         3.4  0.2
# looic      1244.9 22.7
# ------
# Monte Carlo SE of elpd_loo is 0.0.
#
# All Pareto k estimates are good (k < 0.5).

loo(hs.biom)
# Computed from 4000 by 442 log-likelihood matrix
#          Estimate   SE
# elpd_loo   -476.5 13.7
# p_loo         9.8  0.7
# looic       953.0 27.5
# ------
# Monte Carlo SE of elpd_loo is 0.1.
#
# All Pareto k estimates are good (k < 0.5).

## run 10-folds cross-validation
set.seed(1)
folds <- caret::createFolds(diabetes$Y, k=10, list=FALSE)
cv.base <- kfold(hs.base, folds=folds)
cv.biom <- kfold(hs.biom, folds=folds)

## cross-validated performance
round(posterior_performance(cv.base), 2)
#        mean   sd    2.5%   97.5%
# r2     0.02 0.00    0.01    0.03
# llk -623.14 1.67 -626.61 -620.13
# attr(,"type")
# [1] "cross-validated"

round(posterior_performance(cv.biom), 2)
#        mean   sd    2.5%   97.5%
# r2     0.48 0.01    0.47    0.50
# llk -482.86 3.76 -490.45 -476.56
# attr(,"type")
# [1] "cross-validated"

## projection predictive selection
sel.biom <- projsel(hs.biom)
print(sel.biom, digits=4)
#                 var       kl rel.kl.null rel.kl   elpd delta.elpd
# 1    Intercept only 0.352283     0.00000     NA -627.3 -155.84260
# 2  Initial submodel 0.333156     0.05429 0.0000 -619.8 -148.39729
# 3               bmi 0.138629     0.60648 0.5839 -533.1  -61.69199
# 4               ltg 0.058441     0.83411 0.8246 -492.5  -21.09681
# 5               map 0.035970     0.89789 0.8920 -482.7  -11.25515
# 6               hdl 0.010304     0.97075 0.9691 -473.9   -2.41192
# 7                tc 0.005292     0.98498 0.9841 -472.2   -0.72490
# 8               ldl 0.002444     0.99306 0.9927 -471.8   -0.38292
# 9               tch 0.001105     0.99686 0.9967 -471.5   -0.07819
# 10              glu 0.000000     1.00000 1.0000 -471.4    0.00000

References

About

An R package for biomarker discovery using Bayesian models implemented in Stan

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published