Skip to content

Commit

Permalink
Merge branch 'main' into restartDict-snstop
Browse files Browse the repository at this point in the history
  • Loading branch information
sseraj authored Jul 6, 2024
2 parents f725379 + d96a398 commit 19a3fd7
Show file tree
Hide file tree
Showing 5 changed files with 91 additions and 42 deletions.
31 changes: 22 additions & 9 deletions doc/guide.rst
Original file line number Diff line number Diff line change
Expand Up @@ -22,13 +22,13 @@ The optimization class is created using the following call:

.. code-block:: python
optProb = Optimization("name", objFun)
optProb = Optimization("name", objconFun)
The general template of the objective function is as follows:
The general template of the objective and constraint function is as follows:

.. code-block:: python
def obj_fun(xdict):
def objconFun(xdict):
funcs = {}
funcs["obj_name"] = function(xdict)
funcs["con_name"] = function(xdict)
Expand Down Expand Up @@ -196,17 +196,30 @@ This argument is a dictionary, and the keys must match the design variable sets
Essentially what we have done is specified the which blocks of the constraint rows are non-zero,
and provided the sparsity structure of ones that are sparse.

For linear constraints the values in ``jac`` are meaningful:
they must be the actual linear constraint Jacobian values (which do not change).
For non-linear constraints, only the sparsity structure (i.e. which entries are nonzero) is significant.
The values themselves will be determined by a call to the ``sens()`` function.

Also note, that the ``wrt`` and ``jac`` keyword arguments are only supported when user-supplied sensitivity is used.
Note that the ``wrt`` and ``jac`` keyword arguments are only supported when user-supplied sensitivity is used.
If automatic gradients from pyOptSparse are used, the constraint Jacobian will necessarily be dense.

.. note::
Currently, only the optimizers SNOPT and IPOPT support sparse Jacobians.

Linear Constraints
~~~~~~~~~~~~~~~~~~
Linear constraints in pyOptSparse are defined exclusively by ``jac``, ``lower``, and ``upper`` entries of the ``addConGroup`` method.
For linear constraint :math:`g_L \leq Ax + b \leq g_U`, the constraint definition would look like:

.. code-block:: python
optProb.addConGroup("con", num_cons, linear=True, wrt=["xvars"], jac={"xvars": A}, lower=gL - b, upper=gU - b)
Users should not provide the linear constraint values (i.e., :math:`g = Ax + b`) in a user-defined objective/constraint function.
pyOptSparse will raise an error if you do so.

For linear constraints, the values in ``jac`` are meaningful:
they must be the actual linear constraint Jacobian values (which do not change).
For non-linear constraints, only the sparsity structure (i.e. which entries are nonzero) is significant.
The values themselves will be determined by a call to the ``sens()`` function.


Objectives
++++++++++

Expand Down
20 changes: 20 additions & 0 deletions pyoptsparse/pyOpt_optimizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -367,6 +367,10 @@ def _masterFunc2(self, x, evaluate, writeHist=True):
self.userObjTime += time.time() - timeA
self.userObjCalls += 1

# Make sure the user-defined function does *not* return linear constraint values
if self.callCounter == 0:
self._checkLinearConstraints(funcs)

# Discard zero imaginary components in funcs
for key, val in funcs.items():
funcs[key] = np.real(val)
Expand Down Expand Up @@ -417,6 +421,10 @@ def _masterFunc2(self, x, evaluate, writeHist=True):
self.userObjTime += time.time() - timeA
self.userObjCalls += 1

# Make sure the user-defined function does *not* return linear constraint values
if self.callCounter == 0:
self._checkLinearConstraints(funcs)

# Discard zero imaginary components in funcs
for key, val in funcs.items():
funcs[key] = np.real(val)
Expand Down Expand Up @@ -867,6 +875,18 @@ def _on_setOption(self, name, value):
"""
pass

def _checkLinearConstraints(self, funcs):
"""
Makes sure that the user-defined obj/con function does not compute the linear constraint values
because the linear constraints are exclusively defined by jac and bounds in addConGroup.
"""
for conName in self.optProb.constraints:
if self.optProb.constraints[conName].linear and conName in funcs:
raise Error(
"Value for linear constraint returned from user obj function. Linear constraints "
+ "are evaluated internally and should not be returned from the user's function."
)

def setOption(self, name, value=None):
"""
Generic routine for all option setting. The routine does
Expand Down
47 changes: 47 additions & 0 deletions tests/test_lincon_error.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
"""
Tests that pyOptSparse raises an error when a user-defined obj/con function returns a linear constraint value
(which should not because linear constraint is defined exclusively by jac and bounds)
"""

# Standard Python modules
import unittest

# First party modules
from pyoptsparse import SLSQP, Optimization
from pyoptsparse.pyOpt_error import Error


def objfunc(xdict):
"""Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3"""
x = xdict["x"]
funcs = {}

funcs["obj"] = x**2
funcs["con"] = x - 1 # falsely return a linear constraint value

fail = False
return funcs, fail


class TestLinearConstraintCheck(unittest.TestCase):
def test(self):
# define an optimization problem with a linear constraint
optProb = Optimization("test", objfunc)
optProb.addVarGroup("x", 1, value=1)
optProb.addObj("obj")
optProb.addConGroup("con", 1, lower=1.0, linear=True, wrt=["x"], jac={"x": [1.0]})

opt = SLSQP()
with self.assertRaises(Error) as context:
opt(optProb, sens="FD")

# check if we get the expected error message
err_msg = (
"Value for linear constraint returned from user obj function. Linear constraints "
+ "are evaluated internally and should not be returned from the user's function."
)
self.assertEqual(err_msg, str(context.exception))


if __name__ == "__main__":
unittest.main()
33 changes: 2 additions & 31 deletions tests/test_snopt_bugfix.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,35 +21,6 @@ def objfunc(xdict):
funcs = {}

funcs["obj"] = (x - 3.0) ** 2 + x * y + (y + 4.0) ** 2 - 3.0
conval = -x + y
funcs["con"] = conval

fail = False
return funcs, fail


def objfunc_no_con(xdict):
"""Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3"""
x = xdict["x"]
y = xdict["y"]
funcs = {}

funcs["obj"] = (x - 3.0) ** 2 + x * y + (y + 4.0) ** 2 - 3.0

fail = False
return funcs, fail


def objfunc_2con(xdict):
"""Evaluates the equation f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3"""
x = xdict["x"]
y = xdict["y"]
funcs = {}

funcs["obj"] = (x - 3.0) ** 2 + x * y + (y + 4.0) ** 2 - 3.0
conval = -x + y
funcs["con"] = conval * np.ones(2)
funcs["con2"] = (conval + 1) * np.ones(3)

fail = False
return funcs, fail
Expand Down Expand Up @@ -115,7 +86,7 @@ def test_opt(self):

def test_opt_bug1(self):
# Due to a new feature, there is a TypeError when you optimize a model without a constraint.
optProb = Optimization("Paraboloid", objfunc_no_con)
optProb = Optimization("Paraboloid", objfunc)

# Design Variables
optProb.addVarGroup("x", 1, varType="c", lower=-50.0, upper=50.0, value=0.0)
Expand All @@ -141,7 +112,7 @@ def test_opt_bug1(self):

def test_opt_bug_print_2con(self):
# Optimization Object
optProb = Optimization("Paraboloid", objfunc_2con)
optProb = Optimization("Paraboloid", objfunc)

# Design Variables
optProb.addVarGroup("x", 1, varType="c", lower=-50.0, upper=50.0, value=0.0)
Expand Down
2 changes: 0 additions & 2 deletions tests/test_user_termination.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,6 @@ def objfunc(self, xdict):
funcs = {}

funcs["obj"] = (x - 3.0) ** 2 + x * y + (y + 4.0) ** 2 - 3.0
conval = -x + y
funcs["con"] = conval

if self.obj_count > self.max_obj:
fail = 2
Expand Down

0 comments on commit 19a3fd7

Please sign in to comment.