Skip to content

Commit

Permalink
More tolerant scalar check (#348)
Browse files Browse the repository at this point in the history
* more tolerant scalar check

* refactor broadcast of value/lower/upper etc.

* isort

* change allow_none to default False

* add missing backtick, good job flake8

* version bump
  • Loading branch information
ewu63 authored Jun 2, 2023
1 parent c7b3784 commit 7101350
Show file tree
Hide file tree
Showing 5 changed files with 70 additions and 109 deletions.
2 changes: 1 addition & 1 deletion pyoptsparse/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
__version__ = "2.10.0"
__version__ = "2.10.1"

from .pyOpt_history import History
from .pyOpt_variable import Variable
Expand Down
40 changes: 4 additions & 36 deletions pyoptsparse/pyOpt_constraint.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@

# Local modules
from .pyOpt_error import Error, pyOptSparseWarning
from .pyOpt_utils import INFINITY, convertToCOO
from .pyOpt_utils import INFINITY, _broadcast_to_array, convertToCOO
from .types import Dict1DType


Expand Down Expand Up @@ -43,41 +43,9 @@ def __init__(
# Before we can do the processing below we need to have lower
# and upper arguments expanded:

if lower is None:
lower = [None for i in range(self.ncon)]
elif np.isscalar(lower):
lower = lower * np.ones(self.ncon)
elif len(lower) == self.ncon:
pass # Some iterable object
else:
raise Error(
"The 'lower' argument to addCon or addConGroup is invalid. "
+ f"It must be None, a scalar, or a list/array or length nCon={nCon}."
)

if upper is None:
upper = [None for i in range(self.ncon)]
elif np.isscalar(upper):
upper = upper * np.ones(self.ncon)
elif len(upper) == self.ncon:
pass # Some iterable object
else:
raise Error(
"The 'upper' argument to addCon or addConGroup is invalid. "
+ f"It must be None, a scalar, or a list/array or length nCon={nCon}."
)

# ------ Process the scale argument
scale = np.atleast_1d(scale)
if len(scale) == 1:
scale = scale[0] * np.ones(nCon)
elif len(scale) == nCon:
pass
else:
raise Error(
f"The length of the 'scale' argument to addCon or addConGroup is {len(scale)}, "
+ f"but the number of constraints is {nCon}."
)
lower = _broadcast_to_array("lower", lower, nCon, allow_none=True)
upper = _broadcast_to_array("upper", upper, nCon, allow_none=True)
scale = _broadcast_to_array("scale", scale, nCon)

# Save lower and upper...they are only used for printing however
self.lower = lower
Expand Down
83 changes: 17 additions & 66 deletions pyoptsparse/pyOpt_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,18 @@
from .pyOpt_constraint import Constraint
from .pyOpt_error import Error
from .pyOpt_objective import Objective
from .pyOpt_utils import ICOL, IDATA, INFINITY, IROW, convertToCOO, convertToCSR, mapToCSR, scaleColumns, scaleRows
from .pyOpt_utils import (
ICOL,
IDATA,
INFINITY,
IROW,
_broadcast_to_array,
convertToCOO,
convertToCSR,
mapToCSR,
scaleColumns,
scaleRows,
)
from .pyOpt_variable import Variable
from .types import Dict1DType, Dict2DType, NumpyType

Expand Down Expand Up @@ -229,71 +240,11 @@ def addVarGroup(
if varType not in ["c", "i", "d"]:
raise Error("Type must be one of 'c' for continuous, 'i' for integer or 'd' for discrete.")

# ------ Process the value argument
value = np.atleast_1d(value).real
if len(value) == 1:
value = value[0] * np.ones(nVars)
elif len(value) == nVars:
pass
else:
raise Error(
f"The length of the 'value' argument to addVarGroup is {len(value)}, "
+ f"but the number of variables in nVars is {nVars}."
)

if lower is None:
lower = [None for i in range(nVars)]
elif np.isscalar(lower):
lower = lower * np.ones(nVars)
elif len(lower) == nVars:
lower = np.atleast_1d(lower).real
else:
raise Error(
"The 'lower' argument to addVarGroup is invalid. "
+ f"It must be None, a scalar, or a list/array or length nVars={nVars}."
)

if upper is None:
upper = [None for i in range(nVars)]
elif np.isscalar(upper):
upper = upper * np.ones(nVars)
elif len(upper) == nVars:
upper = np.atleast_1d(upper).real
else:
raise Error(
"The 'upper' argument to addVarGroup is invalid. "
+ f"It must be None, a scalar, or a list/array or length nVars={nVars}."
)

# ------ Process the scale argument
if scale is None:
scale = np.ones(nVars)
else:
scale = np.atleast_1d(scale)
if len(scale) == 1:
scale = scale[0] * np.ones(nVars)
elif len(scale) == nVars:
pass
else:
raise Error(
f"The length of the 'scale' argument to addVarGroup is {len(scale)}, "
+ f"but the number of variables in nVars is {nVars}."
)

# ------ Process the offset argument
if offset is None:
offset = np.ones(nVars)
else:
offset = np.atleast_1d(offset)
if len(offset) == 1:
offset = offset[0] * np.ones(nVars)
elif len(offset) == nVars:
pass
else:
raise Error(
f"The length of the 'offset' argument to addVarGroup is {len(offset)}, "
+ f"but the number of variables is {nVars}."
)
value = _broadcast_to_array("value", value, nVars)
lower = _broadcast_to_array("lower", lower, nVars, allow_none=True)
upper = _broadcast_to_array("upper", upper, nVars, allow_none=True)
scale = _broadcast_to_array("scale", scale, nVars)
offset = _broadcast_to_array("offset", offset, nVars)

# Determine if scalar i.e. it was called from addVar():
scalar = kwargs.pop("scalar", False)
Expand Down
41 changes: 41 additions & 0 deletions pyoptsparse/pyOpt_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@

# Local modules
from .pyOpt_error import Error
from .types import ArrayType

# Define index mnemonics
IROW = 0
Expand Down Expand Up @@ -529,3 +530,43 @@ def _csc_to_coo(mat: dict) -> dict:
coo_data = np.array(data)

return {"coo": [coo_rows, coo_cols, coo_data], "shape": mat["shape"]}


def _broadcast_to_array(name: str, value: ArrayType, n_values: int, allow_none: bool = False):
"""
Broadcast an input to an array with a specified length
Parameters
----------
name : str
The name of the input. This is only used in the error message emitted.
value : float, list[float], numpy array
The input value
n_values : int
The number of values
allow_none : bool, optional
Whether to allow `None` in the input/output, by default False
Returns
-------
NDArray
An array with the shape ``(n_values)``
Raises
------
Error
If either the input is not broadcastable, or if the input contains None and ``allow_none=False``.
Warnings
--------
Note that the default value for ``allow_none`` is False.
"""
try:
value = np.broadcast_to(value, n_values)
except ValueError:
raise Error(
f"The '{name}' argument is invalid. It must be None, a scalar, or a list/array or length {n_values}."
)
if not allow_none and any([i is None for i in value]):
raise Error(f"The {name} argument cannot be 'None'.")
return value
13 changes: 7 additions & 6 deletions pyoptsparse/types.py
Original file line number Diff line number Diff line change
@@ -1,14 +1,15 @@
# Standard Python modules
from typing import Dict, List, Union
from typing import Dict, Sequence, Union

# External modules
from numpy import ndarray
import numpy as np
import numpy.typing as npt

# Either ndarray or scalar
NumpyType = Union[float, ndarray]
NumpyType = Union[float, npt.NDArray[np.float_]]
# ndarray, list of numbers, or scalar
ArrayType = Union[float, List[float], ndarray]
ArrayType = Union[NumpyType, Sequence[float]]
# funcs
Dict1DType = Dict[str, ndarray]
Dict1DType = Dict[str, npt.NDArray[np.float_]]
# funcsSens
Dict2DType = Dict[str, Dict[str, ndarray]]
Dict2DType = Dict[str, Dict[str, npt.NDArray[np.float_]]]

0 comments on commit 7101350

Please sign in to comment.