Skip to content

Jst/support multi epoch pp qlora finetuning #144

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
85 changes: 43 additions & 42 deletions large_language_models/alpaca-qlora/finetune_pp.py
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ def tokenize(prompt):
batch_size=args.micro_batch_size,
sampler=RandomSampler(train_dataset, generator=generator),
collate_fn=data_collator,
drop_last=False,
drop_last=True,
num_workers=0,
pin_memory=True,
worker_init_fn=seed_worker,
Expand Down Expand Up @@ -148,7 +148,7 @@ def tokenize(prompt):
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=len(epoch_iterator) // GRADIENT_ACCUMULATION_STEPS,
num_training_steps=EPOCHS * len(epoch_iterator) // GRADIENT_ACCUMULATION_STEPS,
)

scaler = torch.cuda.amp.GradScaler()
Expand All @@ -158,47 +158,48 @@ def tokenize(prompt):
model.eval()
model.train()

step = 0
accumulated_loss = 0
for inputs in tqdm(epoch_iterator):
step += 1
with torch.cuda.amp.autocast(cache_enabled=True, dtype=torch.float16):
labels = inputs.pop("labels")
outputs = model(**inputs)
outputs["logits"] = outputs["logits"].float()
labels = labels.to(outputs["logits"].device)
shift_logits = outputs["logits"][..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, shift_logits.shape[-1])
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)

loss /= GRADIENT_ACCUMULATION_STEPS
accumulated_loss += loss.item()
scaler.scale(loss).backward()

if step % GRADIENT_ACCUMULATION_STEPS == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, model.parameters()), max_norm=1.0
)
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
model.zero_grad()
tqdm.write(
"{"
+ "'loss': {0:1.4f}, 'learning_rate': {1:2.6f}, 'epoch': {2:3.2f}".format(
accumulated_loss,
optimizer.param_groups[0]["lr"],
step / len(epoch_iterator),
for epoch in range(EPOCHS):
step = 0
accumulated_loss = 0
for inputs in tqdm(epoch_iterator):
step += 1
with torch.cuda.amp.autocast(cache_enabled=True, dtype=torch.float16):
labels = inputs.pop("labels")
outputs = model(**inputs)
outputs["logits"] = outputs["logits"].float()
labels = labels.to(outputs["logits"].device)
shift_logits = outputs["logits"][..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
shift_logits = shift_logits.view(-1, shift_logits.shape[-1])
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)

loss /= GRADIENT_ACCUMULATION_STEPS
accumulated_loss += loss.item()
scaler.scale(loss).backward()

if step % GRADIENT_ACCUMULATION_STEPS == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
filter(lambda p: p.requires_grad, model.parameters()), max_norm=1.0
)
+ "}"
)
accumulated_loss = 0
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
model.zero_grad()
tqdm.write(
"{"
+ "'loss': {0:1.4f}, 'learning_rate': {1:2.6f}, 'epoch': {2:3.2f}".format(
accumulated_loss,
optimizer.param_groups[0]["lr"],
step / len(epoch_iterator) + epoch,
)
+ "}"
)
accumulated_loss = 0

print("Peak memory usage for GPUs: ", end="")
for i in range(len(model.model.devices)):
Expand Down