-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
365e79f
commit 9a5c938
Showing
7 changed files
with
602 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
from abc import ABC | ||
|
||
|
||
class AtomicDensityBase(ABC): | ||
... | ||
|
||
|
||
class GaussianDensity(AtomicDensityBase): | ||
def __init__(self, atomic_gaussian_width: float): | ||
self.atomic_gaussian_width = atomic_gaussian_width | ||
|
||
|
||
class DeltaDensity(AtomicDensityBase): | ||
... | ||
|
||
|
||
class LODEDensity(AtomicDensityBase): | ||
def __init__(self, potential_exponent: int): | ||
self.potential_exponent = potential_exponent |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,160 @@ | ||
from abc import ABC, abstractmethod | ||
from typing import Union | ||
|
||
import numpy as np | ||
|
||
|
||
try: | ||
from scipy.integrate import quad | ||
|
||
HAS_SCIPY = True | ||
except ImportError: | ||
HAS_SCIPY = False | ||
|
||
|
||
class RadialBasisBase(ABC): | ||
""" | ||
Base class for evaluating the radial basis. | ||
:parameter orthonormalization_cutoff: Provide value if the radial integral should be | ||
orthonormalized. If :py:obj:`None` no orthonormalization will be performed. | ||
""" | ||
|
||
def __init__(self, orthonormalization_cutoff: float): | ||
self.orthonormalization_cutoff = orthonormalization_cutoff | ||
|
||
@abstractmethod | ||
def compute( | ||
self, n: float, ell: float, integrand_positions: Union[float, np.ndarray] | ||
) -> Union[float, np.ndarray]: | ||
"""Method calculating the radial basis. | ||
Explicitly implemented in child classes.""" | ||
... | ||
|
||
def compute_derivative( | ||
self, n: float, ell: float, integrand_positions: np.ndarray | ||
) -> np.ndarray: | ||
"""Derivative of the radial basis.""" | ||
displacement = 1e-6 | ||
mean_abs_positions = np.abs(integrand_positions).mean() | ||
|
||
if mean_abs_positions <= 1.0: | ||
raise ValueError( | ||
"Numerically derivative of the radial integral can not be performed " | ||
"since positions are too small. Mean of the absolute positions is " | ||
f"{mean_abs_positions:.1e} but should be at least 1." | ||
) | ||
|
||
radial_basis_pos = self.compute(n, ell, integrand_positions + displacement / 2) | ||
radial_basis_neg = self.compute(n, ell, integrand_positions - displacement / 2) | ||
|
||
return (radial_basis_pos - radial_basis_neg) / displacement | ||
|
||
def compute_gram_matrix( | ||
self, | ||
max_radial: int, | ||
max_angular: int, | ||
) -> np.ndarray: | ||
"""Orthornomalize the basis. | ||
:returns: orthornomalization matrix of shape (max_angular + 1, max_radial, | ||
max_radial) | ||
""" | ||
|
||
if not HAS_SCIPY: | ||
raise ValueError("Orthornomalization requires scipy!") | ||
|
||
# Gram matrix (also called overlap matrix or inner product matrix) | ||
gram_matrix = np.zeros((max_angular + 1, max_radial, max_radial)) | ||
|
||
def integrand( | ||
integrand_positions: np.ndarray, | ||
n1: int, | ||
n2: int, | ||
ell: int, | ||
) -> np.ndarray: | ||
return ( | ||
integrand_positions**2 | ||
* self.compute(n1, ell, integrand_positions) | ||
* self.compute(n2, ell, integrand_positions) | ||
) | ||
|
||
for ell in range(max_angular + 1): | ||
for n1 in range(max_radial): | ||
for n2 in range(max_radial): | ||
gram_matrix[ell, n1, n2] = quad( | ||
func=integrand, | ||
a=0, | ||
b=self.orthonormalization_cutoff, | ||
args=(n1, n2, ell), | ||
)[0] | ||
|
||
return gram_matrix | ||
|
||
def compute_orthonormalization_matrix( | ||
self, | ||
max_radial: int, | ||
max_angular: int, | ||
) -> np.ndarray: | ||
"""Compute orthonormalization matrix | ||
:returns: orthornomalization matrix of shape (max_angular + 1, max_radial, | ||
max_radial) | ||
""" | ||
|
||
gram_matrix = self.compute_gram_matrix(max_radial, max_angular) | ||
|
||
# Get the normalization constants from the diagonal entries | ||
normalizations = np.zeros((max_angular + 1, max_radial)) | ||
|
||
for ell in range(max_angular + 1): | ||
for n in range(max_radial): | ||
normalizations[ell, n] = 1 / np.sqrt(gram_matrix[ell, n, n]) | ||
|
||
# Rescale orthonormalization matrix to be defined | ||
# in terms of the normalized (but not yet orthonormalized) | ||
# basis functions | ||
gram_matrix[ell, n, :] *= normalizations[ell, n] | ||
gram_matrix[ell, :, n] *= normalizations[ell, n] | ||
|
||
orthonormalization_matrix = np.zeros_like(gram_matrix) | ||
for ell in range(max_angular + 1): | ||
eigvals, eigvecs = np.linalg.eigh(gram_matrix[ell]) | ||
orthonormalization_matrix[ell] = ( | ||
eigvecs @ np.diag(np.sqrt(1.0 / eigvals)) @ eigvecs.T | ||
) | ||
|
||
# Rescale the orthonormalization matrix so that it | ||
# works with respect to the primitive (not yet normalized) | ||
# radial basis functions | ||
for ell in range(max_angular + 1): | ||
for n in range(max_radial): | ||
orthonormalization_matrix[ell, :, n] *= normalizations[ell, n] | ||
|
||
return orthonormalization_matrix | ||
|
||
|
||
class GTOBasis(RadialBasisBase): | ||
"""Primitive (not normolized nor orthonormlized) GTO radial basis.""" | ||
|
||
def __init__(self, max_radial, cutoff): | ||
super().__init__(orthonormalization_cutoff=np.inf) | ||
self.max_radial = max_radial | ||
self.cutoff = cutoff | ||
self.sigmas = np.ones(self.max_radial, dtype=float) | ||
|
||
for i in range(1, self.max_radial): | ||
self.sigmas[i] = np.sqrt(i) | ||
self.sigmas *= self.cutoff / self.max_radial | ||
|
||
def compute( | ||
self, n: float, ell: float, integrand_positions: Union[float, np.ndarray] | ||
) -> Union[float, np.ndarray]: | ||
return integrand_positions**n * np.exp( | ||
-0.5 * (integrand_positions / self.sigmas[n]) ** 2 | ||
) | ||
|
||
|
||
class MonomialBasis(RadialBasisBase): | ||
... |
Oops, something went wrong.