Hierarchy-boosted funnel learning for identifying semiconductors with ultralow lattice thermal conductivity
Data-driven machine learning (ML) has demonstrated tremendous potential in material property predictions. However, the scarcity of materials data with costly property labels in the vast chemical space presents a significant challenge for ML in efficiently predicting properties and uncovering structure-property relationships. Here, we propose a novel hierarchy-boosted funnel learning (HiBoFL) framework, which is successfully applied to identify semiconductors with ultralow lattice thermal conductivity (