Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added precision, recall, f1_score #20

Merged
merged 8 commits into from
Jun 9, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ export(auc)
export(bias)
export(ce)
export(f1)
export(fbeta_score)
export(ll)
export(logLoss)
export(mae)
Expand All @@ -20,7 +21,9 @@ export(mdae)
export(mse)
export(msle)
export(percent_bias)
export(precision)
export(rae)
export(recall)
export(rmse)
export(rmsle)
export(rrse)
Expand Down
62 changes: 62 additions & 0 deletions R/binary_classification.R
Original file line number Diff line number Diff line change
Expand Up @@ -76,3 +76,65 @@ ll <- function(actual, predicted) {
logLoss <- function(actual, predicted) {
return(mean(ll(actual, predicted)))
}



#' Precision
#'
#' \code{precision} computes proportion of observations predicted to be in the
#' positive class (i.e. the element in \code{predicted} equals 1)
#' that actually belong to the positive class (i.e. the element
#' in \code{actual} equals 1)
#'
#' @inheritParams params_binary
#' @export
#' @seealso \code{\link{recall}} \code{\link{fbeta_score}}
#' @examples
#' actual <- c(1, 1, 1, 0, 0, 0)
#' predicted <- c(1, 1, 1, 1, 1, 1)
#' precision(actual, predicted)
precision <- function(actual, predicted) {
return(mean(actual[predicted == 1]))
}

#' Recall
#'
#' \code{recall} computes proportion of observations in the positive class
#' (i.e. the element in \code{actual} equals 1) that are predicted
#' to be in the positive class (i.e. the element in \code{predicted}
#' equals 1)
#'
#' @inheritParams params_binary
#' @export
#' @seealso \code{\link{precision}} \code{\link{fbeta_score}}
#' @examples
#' actual <- c(1, 1, 1, 0, 0, 0)
#' predicted <- c(1, 0, 1, 1, 1, 1)
#' recall(actual, predicted)
recall <- function(actual, predicted) {
return(mean(predicted[actual == 1]))
}

#' F-beta Score
#'
#' \code{fbeta_score} computes a weighted harmonic mean of Precision and Recall.
#' The \code{beta} parameter controls the weighting.
#'
#' @inheritParams params_binary
#' @param beta A non-negative real number controlling how close the F-beta score is to
#' either Precision or Recall. When \code{beta} is at the default of 1,
#' the F-beta Score is exactly an equally weighted harmonic mean.
#' The F-beta score will weight toward Precision when \code{beta} is less
#' than one. The F-beta score will weight toward Recall when \code{beta} is
#' greater than one.
#' @export
#' @seealso \code{\link{precision}} \code{\link{recall}}
#' @examples
#' actual <- c(1, 1, 1, 0, 0, 0)
#' predicted <- c(1, 0, 1, 1, 1, 1)
#' recall(actual, predicted)
fbeta_score <- function(actual, predicted, beta = 1) {
prec <- precision(actual, predicted)
rec <- recall(actual, predicted)
return((1 + beta^2) * prec * rec / ((beta^2 * prec) + rec))
}
3 changes: 3 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,3 +43,6 @@ All functions in the **Metrics** package take at least two arguments: `actual` a
| binary classification | Area Under ROC Curve | auc | ![equation](https://latex.codecogs.com/gif.latex?%5Cdpi%7B150%7D%20%5Cint_0%5E1%20%5B1%20-%20G_1%28G%5E%7B-1%7D_0%281%20-%20v%29%29%5D%20dv). `help(auc)` for details. |
| binary classification | Log Loss | ll | ![equation](https://latex.codecogs.com/gif.latex?%5Cdpi%7B150%7D%20x_i%20*%20%5Cln%28y_i%29%20&plus;%20%281%20-%20x_i%29%20*%20%5Cln%281%20-%20y_i%29) |
| binary classification | Mean Log Loss | logloss | ![equation](https://latex.codecogs.com/gif.latex?%5Cdpi%7B150%7D%20%5Cfrac%7B1%7D%7Bn%7D%20%5Csum_%7Bi%3D1%7D%5En%20x_i%20*%20%5Cln%28y_i%29%20&plus;%20%281%20-%20x_i%29%20*%20%5Cln%281%20-%20y_i%29) |
| binary classification | Precision | precision | ![equation](https://latex.codecogs.com/gif.latex?%5Cdpi%7B150%7D%20%5Cfrac%7B1%7D%7B%5Csum%20I%28y_i%20%3D%201%29%7D%5Csum_%7Bi%3D1%7D%20%5E%7Bn%7D%20I%28y_i%20%3D%201%29x_i) |
| binary classification | Recall | recall | ![equation](https://latex.codecogs.com/gif.latex?%5Cdpi%7B150%7D%20%5Cfrac%7B1%7D%7B%5Csum%20I%28x_i%20%3D%201%29%7D%5Csum_%7Bi%3D1%7D%20%5E%7Bn%7D%20I%28x_i%20%3D%201%29y_i) |
| binary classification | F-beta Score | fbeta_score | ![equation](https://latex.codecogs.com/gif.latex?%5Cdpi%7B150%7D%20%281%20&plus;%20%5Cbeta%5E2%29%20%5Cfrac%7B%5Ctext%7Bprecision%7D%20*%20%5Ctext%7Brecall%7D%7D%7B%20%28%5Cbeta%5E2%20*%20%5Ctext%7Bprecision%7D%29%20&plus;%20%5Ctext%7Brecall%7D%7D) |
35 changes: 35 additions & 0 deletions man/fbeta_score.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

30 changes: 30 additions & 0 deletions man/precision.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

30 changes: 30 additions & 0 deletions man/recall.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

19 changes: 19 additions & 0 deletions tests/testthat/test-binary_classification.R
Original file line number Diff line number Diff line change
Expand Up @@ -21,3 +21,22 @@ test_that('mean los loss is calculated correctly', {
expect_equal(logLoss(c(1,1,1,0,0,0),c(.5,.1,.01,.9,.75,.001)), 1.881797068998267)
})

test_that('precision is calculated correctly', {
expect_equal(precision(c(1,1,0,0),c(1,1,0,0)), 1)
expect_equal(precision(c(0,0,1,1),c(1,1,0,0)), 0)
expect_equal(precision(c(1,1,0,0),c(1,1,1,1)), 1/2)
})

test_that('recall is calculated correctly', {
expect_equal(recall(c(1,1,0,0),c(1,1,0,0)), 1)
expect_equal(recall(c(0,0,1,1),c(1,1,0,0)), 0)
expect_equal(recall(c(1,1,1,1),c(1,0,0,1)), 1/2)
})

test_that('f-beta score is calculated correctly',{
expect_equal(fbeta_score(c(1,1,0,0),c(1,1,0,0)), 1)
expect_equal(fbeta_score(c(0,0,1,1),c(1,1,1,0)), 2/5)
expect_equal(fbeta_score(c(1,1,1,1),c(1,0,0,1)), 2/3)
expect_equal(fbeta_score(c(1,1,0,0),c(1,1,1,1),beta=0), 1/2)
})