Skip to content

Reference implementation and documentation of a LoRa network node.

License

Notifications You must be signed in to change notification settings

mgrubertirol/LoRaMac-node

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LoRaWAN end-device stack implementation and example projects

  ______                              _
 / _____)             _              | |
( (____  _____ ____ _| |_ _____  ____| |__
 \____ \| ___ |    (_   _) ___ |/ ___)  _ \
 _____) ) ____| | | || |_| ____( (___| | | |
(______/|_____)_|_|_| \__)_____)\____)_| |_|
    (C)2013-2021 Semtech

 ___ _____ _   ___ _  _____ ___  ___  ___ ___
/ __|_   _/_\ / __| |/ / __/ _ \| _ \/ __| __|
\__ \ | |/ _ \ (__| ' <| _| (_) |   / (__| _|
|___/ |_/_/ \_\___|_|\_\_| \___/|_|_\\___|___|
embedded.connectivity.solutions===============

Introduction

The aim of this project is to show an example of an end-device LoRaWAN stack implementation.

This project has 2 active branches in place.

Branch L2 spec RP spec Tag/Milestone Class Comments
1.0.4 / 1.1.0 + FCntDwn ERRATA 2-1.0.1 v4.6.0 A/B/C LoRaWAN L2 1.0.4 - Released
master 1.0.4 / 1.1.0 + FCntDwn ERRATA 2-1.0.1 M 4.7.0 A/B/C LoRaWAN L2 1.0.4 / 1.1.0
v5.0.0-branch 1.0.4 / 1.1.0 + FCntDwn ERRATA 2-1.0.3 M 5.0.0 A/B/C LoRaWAN L2 1.0.4 / 1.1.0 - Adds support for LR-FHSS modulation

This project fully implements ClassA, ClassB and ClassC end-device classes and it also provides SX1272/73, SX1276/77/78/79, SX1261/2 and LR1110 radio drivers.

For each currently supported platform example applications are provided.

  • LoRaMac/fuota-test-01: FUOTA test scenario 01 end-device example application. (Based on provided application common packages)

  • LoRaMac/periodic-uplink-lpp: ClassA/B/C end-device example application. Periodically uplinks a frame using the Cayenne LPP protocol. (Based on provided application common packages)

  • ping-pong: Point to point RF link example application.

  • rx-sensi: Example application useful to measure the radio sensitivity level using an RF generator.

  • tx-cw: Example application to show how to generate an RF Continuous Wave transmission.

Note: Each LoRaWAN application example (LoRaMac/*) includes an implementation of the LoRa-Alliance; LoRaWAN certification protocol.

Note: The LoRaWAN stack API documentation can be found at: http://stackforce.github.io/LoRaMac-doc/

Supported platforms

This project currently provides support for the below platforms.
This project can be ported to other platforms using different MCU than the ones currently supported.
The Porting Guide document provides guide lines on how to port the project to other platforms.

Getting Started

Prerequisites

Please follow instructions provided by Development environment document.

Cloning the repository

Clone the repository from GitHub

$ git clone https://github.com/lora-net/loramac-node.git loramac-node

LoRaMac-node project contains Git submodules that must be initialized

$ cd loramac-node
$ git submodule update --init

Secure-element commissioning

This project currently supports 3 different secure-elements soft-se, lr1110-se and atecc608a-tnglora-se implementations.

In order to personalize the MCU binary file with LoRaWAN EUIs or/and AES128 keys one must follow the instructions provided by soft-se, lr1110-se and atecc608a-tnglora-se chapters

soft-se

soft-se is a pure software emulation of a secure-element. It means that everything is located on the host MCU memories. The DevEUI, JoinEUI and AES128 keys may be stored on a non-volatile memory through dedicated APIs.

In order to update the end-device identity (DevEUI, JoinEUI and AES128 keys) one must update the se-identity.h file located under ./src/peripherals/soft-se/ directory.

Note: In previous versions of this project this was done inside Commissioning.h files located under each provided example directory.

lr1110-se

lr1110-se abstraction implementation handles all the required exchanges with the LR1110 radio crypto-engine.

All LR1110 radio chips are pre-provisioned out of factory in order to be used with LoRa Cloud Device Join Service.

In case other Join Servers are to be used the DevEUI, Pin, JoinEUI and AES128 keys can be updated by following the instructions provided on chapter "13. LR1110 Provisioning" of the LR1110 User Manual.

When the compile option SECURE_ELEMENT_PRE_PROVISIONED is set to ON the lr1110-se will use the factory provisioned data (DevEUI, JoinEUI and AES128 keys).
When the compile option SECURE_ELEMENT_PRE_PROVISIONED is set to OFF the lr1110-se has to be provisioned by following one of the methods described on chapter "13. LR1110 Provisioning" of the LR1110 User Manual. The DevEUI, Pin and JoinEUI can be changed by editing the se-identity.h file located in ./src/peripherals/lr1110-se/ directory.

atecc608a-tnglora-se

The atecc608a-tnglora-se abstraction implementation handles all the required exchanges with the ATECC608A-TNGLORA secure-element.

ATECC608A-TNGLORA secure-element is always pre-provisioned and its contents can't be changed.

Building Process

Command line

periodic-uplink-lpp example for NucleoL476 platform with LR1110MB1DIS MBED shield and using LR1110 pre-provisioned secure-element

$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release \
        -DTOOLCHAIN_PREFIX="<replace by toolchain path>" \
        -DCMAKE_TOOLCHAIN_FILE="../cmake/toolchain-arm-none-eabi.cmake" \
        -DAPPLICATION="LoRaMac" \
        -DSUB_PROJECT="periodic-uplink-lpp" \
        -DCLASSB_ENABLED="ON" \
        -DACTIVE_REGION="LORAMAC_REGION_EU868" \
        -DREGION_EU868="ON" \
        -DREGION_US915="OFF" \
        -DREGION_CN779="OFF" \
        -DREGION_EU433="OFF" \
        -DREGION_AU915="OFF" \
        -DREGION_AS923="OFF" \
        -DREGION_CN470="OFF" \
        -DREGION_KR920="OFF" \
        -DREGION_IN865="OFF" \
        -DREGION_RU864="OFF" \
        -DBOARD="NucleoL476" \
        -DMBED_RADIO_SHIELD="LR1110MB1XXS" \
        -DSECURE_ELEMENT="LR1110_SE" \
        -DSECURE_ELEMENT_PRE_PROVISIONED="ON" \
        -DUSE_RADIO_DEBUG="ON" ..
$ make

ping-pong example using LoRa modulation for NucleoL476 platform with LR1110MB1DIS MBED shield

$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release \
        -DTOOLCHAIN_PREFIX="<replace by toolchain path>" \
        -DCMAKE_TOOLCHAIN_FILE="../cmake/toolchain-arm-none-eabi.cmake" \
        -DAPPLICATION="ping-pong" \
        -DMODULATION:"LORA" \
        -DREGION_EU868="ON" \
        -DREGION_US915="OFF" \
        -DREGION_CN779="OFF" \
        -DREGION_EU433="OFF" \
        -DREGION_AU915="OFF" \
        -DREGION_AS923="OFF" \
        -DREGION_CN470="OFF" \
        -DREGION_KR920="OFF" \
        -DREGION_IN865="OFF" \
        -DREGION_RU864="OFF" \
        -DBOARD="NucleoL476" \
        -DMBED_RADIO_SHIELD="LR1110MB1XXS" \
        -DUSE_RADIO_DEBUG="ON" ..
$ make

VSCode

periodic-uplink-lpp example for NucleoL476 platform with LR1110MB1DIS MBED shield and using LR1110 pre-provisioned secure-element

  • Please edit .vscode/settings.json file
Click to expand!

// Place your settings in this file to overwrite default and user settings.
{
    "cmake.configureSettings": {

        // In case your GNU ARM-Toolchain is not installed under the default
        // path:
        //     Windows : No default path. Specify the path where the
        //               toolchain is installed. i.e:
        //               "C:/PROGRA~2/GNUTOO~1/92019-~1".
        //     Linux   : /usr
        //     OSX     : /usr/local
        // It is required to uncomment and to fill the following line.
        "TOOLCHAIN_PREFIX":"/path/to/toolchain",

        // In case your OpenOCD is not installed under the default path:
        //     Windows : C:/openocd/bin/openocd.exe
        //     Linux   : /usr/bin/openocd
        //     OSX     : /usr/local/bin/openocd
        // Please uncomment the following line and fill it accordingly.
        //"OPENOCD_BIN":"C:/openocd/bin/openocd.exe",

        // Specifies the path to the CMAKE toolchain file.
        "CMAKE_TOOLCHAIN_FILE":"cmake/toolchain-arm-none-eabi.cmake",

        // Determines the application. You can choose between:
        // LoRaMac (Default), ping-pong, rx-sensi, tx-cw.
        "APPLICATION":"LoRaMac",

        // Select LoRaMac sub project. You can choose between:
        // periodic-uplink-lpp, fuota-test-01.
        "SUB_PROJECT":"periodic-uplink-lpp",

        // Switch for Class B support of LoRaMac:
        "CLASSB_ENABLED":"ON",

        // Select the active region for which the stack will be initialized.
        // You can choose between:
        // LORAMAC_REGION_EU868, LORAMAC_REGION_US915, ..
        "ACTIVE_REGION":"LORAMAC_REGION_EU868",

        // Select the type of modulation, applicable to the ping-pong or
        // rx-sensi applications. You can choose between:
        // LORA or FSK
        "MODULATION":"LORA",

        // Target board, the following boards are supported:
        // NAMote72, NucleoL073 (Default), NucleoL152, NucleoL476, SAMR34, SKiM880B, SKiM980A, SKiM881AXL, B-L072Z-LRWAN1.
        "BOARD":"NucleoL476",

        // MBED Radio shield selection. (Applies only to Nucleo platforms)
        // The following shields are supported:
        // SX1272MB2DAS, SX1276MB1LAS, SX1276MB1MAS, SX1261MBXBAS(Default), SX1262MBXCAS, SX1262MBXDAS, LR1110MB1XXS.
        "MBED_RADIO_SHIELD":"LR1110MB1XXS",

        // Secure element type selection the following are supported
        // SOFT_SE(Default), LR1110_SE, ATECC608A_TNGLORA_SE
        "SECURE_ELEMENT":"LR1110_SE",

        // Secure element is pre-provisioned
        "SECURE_ELEMENT_PRE_PROVISIONED":"ON",

        // Region support activation, Select the ones you want to support.
        // By default only REGION_EU868 support is enabled.
        "REGION_EU868":"ON",
        "REGION_US915":"OFF",
        "REGION_CN779":"OFF",
        "REGION_EU433":"OFF",
        "REGION_AU915":"OFF",
        "REGION_AS923":"OFF",
        "REGION_CN470":"OFF",
        "REGION_KR920":"OFF",
        "REGION_IN865":"OFF",
        "REGION_RU864":"OFF",
        "USE_RADIO_DEBUG":"ON"
    }
}

  • Click on "CMake: Debug: Ready" and select build type Debug or Release.
    cmake configure
  • Wait for configuration process to finish
  • Click on "Build" to build the project.
    cmake build
  • Wait for build process to finish
  • Binary files will be available under ./build/src/apps/LoRaMac/
    • LoRaMac-periodic-uplink-lpp - elf format
    • LoRaMac-periodic-uplink-lpp.bin - binary format
    • LoRaMac-periodic-uplink-lpp.hex - hex format

ping-pong example using LoRa modulation for NucleoL476 platform with LR1110MB1DIS MBED shield

  • Please edit .vscode/settings.json file
Click to expand!

// Place your settings in this file to overwrite default and user settings.
{
    "cmake.configureSettings": {

        // In case your GNU ARM-Toolchain is not installed under the default
        // path:
        //     Windows : No default path. Specify the path where the
        //               toolchain is installed. i.e:
        //               "C:/PROGRA~2/GNUTOO~1/92019-~1".
        //     Linux   : /usr
        //     OSX     : /usr/local
        // It is required to uncomment and to fill the following line.
        "TOOLCHAIN_PREFIX":"/path/to/toolchain",

        // In case your OpenOCD is not installed under the default path:
        //     Windows : C:/openocd/bin/openocd.exe
        //     Linux   : /usr/bin/openocd
        //     OSX     : /usr/local/bin/openocd
        // Please uncomment the following line and fill it accordingly.
        //"OPENOCD_BIN":"C:/openocd/bin/openocd.exe",

        // Specifies the path to the CMAKE toolchain file.
        "CMAKE_TOOLCHAIN_FILE":"cmake/toolchain-arm-none-eabi.cmake",

        // Determines the application. You can choose between:
        // LoRaMac (Default), ping-pong, rx-sensi, tx-cw.
        "APPLICATION":"ping-pong",

        // Select LoRaMac sub project. You can choose between:
        // periodic-uplink-lpp, fuota-test-01.
        "SUB_PROJECT":"periodic-uplink-lpp",

        // Switch for Class B support of LoRaMac:
        "CLASSB_ENABLED":"ON",

        // Select the active region for which the stack will be initialized.
        // You can choose between:
        // LORAMAC_REGION_EU868, LORAMAC_REGION_US915, ..
        "ACTIVE_REGION":"LORAMAC_REGION_EU868",

        // Select the type of modulation, applicable to the ping-pong or
        // rx-sensi applications. You can choose between:
        // LORA or FSK
        "MODULATION":"LORA",

        // Target board, the following boards are supported:
        // NAMote72, NucleoL073 (Default), NucleoL152, NucleoL476, SAMR34, SKiM880B, SKiM980A, SKiM881AXL, B-L072Z-LRWAN1.
        "BOARD":"NucleoL476",

        // MBED Radio shield selection. (Applies only to Nucleo platforms)
        // The following shields are supported:
        // SX1272MB2DAS, SX1276MB1LAS, SX1276MB1MAS, SX1261MBXBAS(Default), SX1262MBXCAS, SX1262MBXDAS, LR1110MB1XXS.
        "MBED_RADIO_SHIELD":"SX1261MBXBAS",

        // Secure element type selection the following are supported
        // SOFT_SE(Default), LR1110_SE, ATECC608A_TNGLORA_SE
        "SECURE_ELEMENT":"SOFT_SE",

        // Secure element is pre-provisioned
        "SECURE_ELEMENT_PRE_PROVISIONED":"ON",

        // Region support activation, Select the ones you want to support.
        // By default only REGION_EU868 support is enabled.
        "REGION_EU868":"ON",
        "REGION_US915":"OFF",
        "REGION_CN779":"OFF",
        "REGION_EU433":"OFF",
        "REGION_AU915":"OFF",
        "REGION_AS923":"OFF",
        "REGION_CN470":"OFF",
        "REGION_KR920":"OFF",
        "REGION_IN865":"OFF",
        "REGION_RU864":"OFF",
        "USE_RADIO_DEBUG":"ON"
    }
}

  • Click on "CMake: Debug: Ready" and select build type Debug or Release.
    cmake configure
  • Wait for configuration process to finish
  • Click on "Build" to build the project.
    cmake build
  • Wait for build process to finish
  • Binary files will be available under ./build/src/apps/ping-pong/
    • ping-pong - elf format
    • ping-pong.bin - binary format
    • ping-pong.hex - hex format

Serial console NVM management

The periodic-uplink-lpp and fuota-test-01 examples allow to reset the NVM storage through the serial interface.

In order to reset the NVM contents one must hit ESC + N keyboard keys on a serial terminal.

The serial terminal will show the following after ESC + N keyboard keys are hit. After reseting the end-device the clean NVM will be used.

ESC + N


NVM factory reset succeed


PLEASE RESET THE END-DEVICE

Acknowledgments

About

Reference implementation and documentation of a LoRa network node.

Resources

License

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C 99.2%
  • Other 0.8%