Skip to content

Commit

Permalink
Merge branch 'master' into tohtana/consistent_zero_grad
Browse files Browse the repository at this point in the history
  • Loading branch information
tohtana authored Sep 27, 2024
2 parents 958dfc1 + d45cfd3 commit 6e05d2c
Show file tree
Hide file tree
Showing 30 changed files with 1,910 additions and 15 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/nv-accelerate-v100.yml
Original file line number Diff line number Diff line change
Expand Up @@ -55,4 +55,4 @@ jobs:
# tmp fix: force newer datasets version
#pip install "datasets>=2.0.0"
pip list
pytest $PYTEST_OPTS --color=yes --durations=0 --verbose tests/deepspeed
pytest $PYTEST_OPTS --color=yes --durations=0 --verbose tests/deepspeed -k "not test_prepare_multiple_models_zero3_inference"
300 changes: 300 additions & 0 deletions accelerator/mlu_accelerator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team
import importlib
import inspect
import functools

from .abstract_accelerator import DeepSpeedAccelerator
import torch
# During setup stage torch may not be installed, pass on no torch will
# allow op builder related API to be executed.


class MLU_Accelerator(DeepSpeedAccelerator):

def __init__(self):
self._name = 'mlu'
self._communication_backend_name = 'cncl'
self._compile_backend = "inductor"
self.class_dict = None

def is_synchronized_device(self):
return False

def use_host_timers(self):
return self.is_synchronized_device()

def resolves_data_dependency(self):
return self.is_synchronized_device()

def handles_memory_backpressure(self):
return self.is_synchronized_device()

# Device APIs
def device_name(self, device_index=None):
if device_index == None:
return 'mlu'
return 'mlu:{}'.format(device_index)

def device(self, device_index=None):
return torch.mlu.device(device_index)

def set_device(self, device_index):
torch.mlu.set_device(device_index)

def current_device(self):
return torch.mlu.current_device()

def current_device_name(self):
return 'mlu:{}'.format(torch.mlu.current_device())

def device_count(self):
return torch.mlu.device_count()

def synchronize(self, device_index=None):
return torch.mlu.synchronize(device_index)

# RNG APIs
def random(self):
return torch.random

def set_rng_state(self, new_state, device_index=None):
if device_index is None:
return torch.mlu.set_rng_state(new_state)

return torch.mlu.set_rng_state(new_state, device_index)

def get_rng_state(self, device_index=None):
if device_index is None:
return torch.mlu.get_rng_state()

return torch.mlu.get_rng_state(device_index)

def manual_seed(self, seed):
return torch.mlu.manual_seed(seed)

def manual_seed_all(self, seed):
return torch.mlu.manual_seed_all(seed)

def initial_seed(self, seed):
return torch.mlu.initial_seed(seed)

def default_generator(self, device_index):
return torch.mlu.default_generators[device_index]

# Streams/Events
@property
def Stream(self):
return torch.mlu.Stream

def stream(self, stream):
return torch.mlu.stream(stream)

def current_stream(self, device_index=None):
return torch.mlu.current_stream(device_index)

def default_stream(self, device_index=None):
return torch.mlu.default_stream(device_index)

@property
def Event(self):
return torch.mlu.Event

# Memory management
def empty_cache(self):
return torch.mlu.empty_cache()

def memory_allocated(self, device_index=None):
return torch.mlu.memory_allocated(device_index)

def max_memory_allocated(self, device_index=None):
return torch.mlu.max_memory_allocated(device_index)

def reset_max_memory_allocated(self, device_index=None):
return torch.mlu.reset_max_memory_allocated(device_index)

def memory_cached(self, device_index=None):
return torch.mlu.memory_cached(device_index)

def max_memory_cached(self, device_index=None):
return torch.mlu.max_memory_cached(device_index)

def reset_max_memory_cached(self, device_index=None):
return torch.mlu.reset_max_memory_cached(device_index)

def memory_stats(self, device_index=None):
if hasattr(torch.mlu, 'memory_stats'):
return torch.mlu.memory_stats(device_index)

def reset_peak_memory_stats(self, device_index=None):
if hasattr(torch.mlu, 'reset_peak_memory_stats'):
return torch.mlu.reset_peak_memory_stats(device_index)

def memory_reserved(self, device_index=None):
if hasattr(torch.mlu, 'memory_reserved'):
return torch.mlu.memory_reserved(device_index)

def max_memory_reserved(self, device_index=None):
if hasattr(torch.mlu, 'max_memory_reserved'):
return torch.mlu.max_memory_reserved(device_index)

def total_memory(self, device_index=None):
return torch.mlu.get_device_properties(device_index).total_memory

def available_memory(self, device_index=None):
return self.total_memory(device_index) - self.memory_allocated(device_index)

# Data types
def is_bf16_supported(self):
return torch.mlu.is_bf16_supported()

def is_fp16_supported(self):
return True

def supported_dtypes(self):
supported_dtypes = [torch.float]
if self.is_fp16_supported():
supported_dtypes.append(torch.half)
if self.is_bf16_supported():
supported_dtypes.append(torch.bfloat16)
return supported_dtypes

# Misc
def amp(self):
if hasattr(torch.mlu, 'amp'):
return torch.mlu.amp
return None

def is_available(self):
return torch.mlu.is_available()

def range_push(self, msg):
if hasattr(torch.mlu.cnpx, 'range_push'):
return torch.mlu.cnpx.range_push(msg)

def range_pop(self):
if hasattr(torch.mlu.cnpx, 'range_pop'):
return torch.mlu.cnpx.range_pop()

def lazy_call(self, callback):
return torch.mlu._lazy_call(callback)

def communication_backend_name(self):
return self._communication_backend_name

def is_triton_supported(self):
return True

# Graph operations
def create_graph(self):
torch.mlu.MLUGraph()

def capture_to_graph(self, graph, pool=None, stream=None):
return torch.mlu.graph(graph, pool, stream)

def replay_graph(self, graph):
graph.replay()
return

# Tensor operations

@property
def BFloat16Tensor(self):
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu')

@property
def ByteTensor(self):
return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu')

@property
def DoubleTensor(self):
return functools.partial(torch.tensor, dtype=torch.double, device='mlu')

@property
def FloatTensor(self):
return functools.partial(torch.tensor, dtype=torch.float, device='mlu')

@property
def HalfTensor(self):
return functools.partial(torch.tensor, dtype=torch.half, device='mlu')

@property
def IntTensor(self):
return functools.partial(torch.tensor, dtype=torch.int, device='mlu')

@property
def LongTensor(self):
return functools.partial(torch.tensor, dtype=torch.long, device='mlu')

def pin_memory(self, tensor):
return tensor.pin_memory()

def is_pinned(self, tensor):
return tensor.is_pinned()

def on_accelerator(self, tensor):
device_str = str(tensor.device)
if device_str.startswith('mlu:'):
return True
else:
return False

def op_builder_dir(self):
try:
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed
# if successful this also means we're doing a local install and not JIT compile path
from op_builder import __deepspeed__ # noqa: F401 # type: ignore
return "op_builder.mlu"
except ImportError:
return "deepspeed.ops.op_builder.mlu"

def _lazy_init_class_dict(self):
if self.class_dict:
return

op_builder_module = importlib.import_module(self.op_builder_dir())

# get op builder class from op_builder/mlu/__init__.py
self.class_dict = {}
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass):
self.class_dict[class_name] = class_obj

# create an instance of op builder and return, name specified by class_name
def create_op_builder(self, class_name):
builder_class = self.get_op_builder(class_name)
return builder_class()

# return an op builder class, name specified by class_name
def get_op_builder(self, class_name):
self._lazy_init_class_dict()
if class_name in self.class_dict:
return self.class_dict[class_name]
else:
return self.class_dict['NotImplementedBuilder']

def build_extension(self):
from torch.utils.cpp_extension import BuildExtension
return BuildExtension

def export_envs(self):
return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH']

def visible_devices_envs(self):
return ['MLU_VISIBLE_DEVICES']

def set_visible_devices_envs(self, current_env, local_accelerator_ids):
for env in self.visible_devices_envs():
current_env[env] = ",".join(map(str, local_accelerator_ids))

def get_compile_backend(self):
return self._compile_backend

def set_compile_backend(self, backend):
supported_backends = torch._dynamo.list_backends(exclude_tags=())
if backend in supported_backends:
self._compile_backend = backend
else:
raise ValueError(
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }")
18 changes: 17 additions & 1 deletion accelerator/real_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
except ImportError as e:
dsa2 = None

SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu']
SUPPORTED_ACCELERATOR_LIST = ['cuda', 'cpu', 'xpu', 'xpu.external', 'npu', 'mps', 'hpu', 'mlu']

ds_accelerator = None

Expand Down Expand Up @@ -94,6 +94,11 @@ def get_accelerator():
except ImportError as e:
raise ValueError(
f"HPU_Accelerator requires habana_frameworks.torch.hpu, which is not installed on this system.")
elif accelerator_name == "mlu":
try:
import torch_mlu # noqa: F401
except ImportError as e:
raise ValueError(f"MLU_Accelerator requires torch_mlu, which is not installed on this system.")
elif accelerator_name not in SUPPORTED_ACCELERATOR_LIST:
raise ValueError(f'DS_ACCELERATOR must be one of {SUPPORTED_ACCELERATOR_LIST}. '
f'Value "{accelerator_name}" is not supported')
Expand Down Expand Up @@ -149,6 +154,13 @@ def get_accelerator():
accelerator_name = "hpu"
except ImportError as e:
pass
if accelerator_name is None:
try:
import torch_mlu # noqa: F401,F811

accelerator_name = "mlu"
except ImportError as e:
pass
if accelerator_name is None:
# borrow this log from PR#5084
try:
Expand Down Expand Up @@ -198,6 +210,10 @@ def get_accelerator():
from .hpu_accelerator import HPU_Accelerator

ds_accelerator = HPU_Accelerator()
elif accelerator_name == 'mlu':
from .mlu_accelerator import MLU_Accelerator

ds_accelerator = MLU_Accelerator()
_validate_accelerator(ds_accelerator)
if accel_logger is not None:
accel_logger.info(f"Setting ds_accelerator to {ds_accelerator._name} ({ds_set_method})")
Expand Down
6 changes: 6 additions & 0 deletions bin/ds_io
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
#!/usr/bin/env python3

from deepspeed.nvme import ds_io_main

if __name__ == '__main__':
ds_io_main()
9 changes: 9 additions & 0 deletions bin/ds_nvme_tune
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
#!/usr/bin/env python3

from deepspeed.nvme import sweep_main, generate_main, parse_sweep_arguments

if __name__ == '__main__':
args = parse_sweep_arguments()
print(f"Running DeepNVMe performance tuning on {args.nvme_dir}")
sweep_main(args)
generate_main(args.log_dir)
Loading

0 comments on commit 6e05d2c

Please sign in to comment.