-
Notifications
You must be signed in to change notification settings - Fork 4.2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' into tohtana/consistent_zero_grad
- Loading branch information
Showing
30 changed files
with
1,910 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,300 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
# DeepSpeed Team | ||
import importlib | ||
import inspect | ||
import functools | ||
|
||
from .abstract_accelerator import DeepSpeedAccelerator | ||
import torch | ||
# During setup stage torch may not be installed, pass on no torch will | ||
# allow op builder related API to be executed. | ||
|
||
|
||
class MLU_Accelerator(DeepSpeedAccelerator): | ||
|
||
def __init__(self): | ||
self._name = 'mlu' | ||
self._communication_backend_name = 'cncl' | ||
self._compile_backend = "inductor" | ||
self.class_dict = None | ||
|
||
def is_synchronized_device(self): | ||
return False | ||
|
||
def use_host_timers(self): | ||
return self.is_synchronized_device() | ||
|
||
def resolves_data_dependency(self): | ||
return self.is_synchronized_device() | ||
|
||
def handles_memory_backpressure(self): | ||
return self.is_synchronized_device() | ||
|
||
# Device APIs | ||
def device_name(self, device_index=None): | ||
if device_index == None: | ||
return 'mlu' | ||
return 'mlu:{}'.format(device_index) | ||
|
||
def device(self, device_index=None): | ||
return torch.mlu.device(device_index) | ||
|
||
def set_device(self, device_index): | ||
torch.mlu.set_device(device_index) | ||
|
||
def current_device(self): | ||
return torch.mlu.current_device() | ||
|
||
def current_device_name(self): | ||
return 'mlu:{}'.format(torch.mlu.current_device()) | ||
|
||
def device_count(self): | ||
return torch.mlu.device_count() | ||
|
||
def synchronize(self, device_index=None): | ||
return torch.mlu.synchronize(device_index) | ||
|
||
# RNG APIs | ||
def random(self): | ||
return torch.random | ||
|
||
def set_rng_state(self, new_state, device_index=None): | ||
if device_index is None: | ||
return torch.mlu.set_rng_state(new_state) | ||
|
||
return torch.mlu.set_rng_state(new_state, device_index) | ||
|
||
def get_rng_state(self, device_index=None): | ||
if device_index is None: | ||
return torch.mlu.get_rng_state() | ||
|
||
return torch.mlu.get_rng_state(device_index) | ||
|
||
def manual_seed(self, seed): | ||
return torch.mlu.manual_seed(seed) | ||
|
||
def manual_seed_all(self, seed): | ||
return torch.mlu.manual_seed_all(seed) | ||
|
||
def initial_seed(self, seed): | ||
return torch.mlu.initial_seed(seed) | ||
|
||
def default_generator(self, device_index): | ||
return torch.mlu.default_generators[device_index] | ||
|
||
# Streams/Events | ||
@property | ||
def Stream(self): | ||
return torch.mlu.Stream | ||
|
||
def stream(self, stream): | ||
return torch.mlu.stream(stream) | ||
|
||
def current_stream(self, device_index=None): | ||
return torch.mlu.current_stream(device_index) | ||
|
||
def default_stream(self, device_index=None): | ||
return torch.mlu.default_stream(device_index) | ||
|
||
@property | ||
def Event(self): | ||
return torch.mlu.Event | ||
|
||
# Memory management | ||
def empty_cache(self): | ||
return torch.mlu.empty_cache() | ||
|
||
def memory_allocated(self, device_index=None): | ||
return torch.mlu.memory_allocated(device_index) | ||
|
||
def max_memory_allocated(self, device_index=None): | ||
return torch.mlu.max_memory_allocated(device_index) | ||
|
||
def reset_max_memory_allocated(self, device_index=None): | ||
return torch.mlu.reset_max_memory_allocated(device_index) | ||
|
||
def memory_cached(self, device_index=None): | ||
return torch.mlu.memory_cached(device_index) | ||
|
||
def max_memory_cached(self, device_index=None): | ||
return torch.mlu.max_memory_cached(device_index) | ||
|
||
def reset_max_memory_cached(self, device_index=None): | ||
return torch.mlu.reset_max_memory_cached(device_index) | ||
|
||
def memory_stats(self, device_index=None): | ||
if hasattr(torch.mlu, 'memory_stats'): | ||
return torch.mlu.memory_stats(device_index) | ||
|
||
def reset_peak_memory_stats(self, device_index=None): | ||
if hasattr(torch.mlu, 'reset_peak_memory_stats'): | ||
return torch.mlu.reset_peak_memory_stats(device_index) | ||
|
||
def memory_reserved(self, device_index=None): | ||
if hasattr(torch.mlu, 'memory_reserved'): | ||
return torch.mlu.memory_reserved(device_index) | ||
|
||
def max_memory_reserved(self, device_index=None): | ||
if hasattr(torch.mlu, 'max_memory_reserved'): | ||
return torch.mlu.max_memory_reserved(device_index) | ||
|
||
def total_memory(self, device_index=None): | ||
return torch.mlu.get_device_properties(device_index).total_memory | ||
|
||
def available_memory(self, device_index=None): | ||
return self.total_memory(device_index) - self.memory_allocated(device_index) | ||
|
||
# Data types | ||
def is_bf16_supported(self): | ||
return torch.mlu.is_bf16_supported() | ||
|
||
def is_fp16_supported(self): | ||
return True | ||
|
||
def supported_dtypes(self): | ||
supported_dtypes = [torch.float] | ||
if self.is_fp16_supported(): | ||
supported_dtypes.append(torch.half) | ||
if self.is_bf16_supported(): | ||
supported_dtypes.append(torch.bfloat16) | ||
return supported_dtypes | ||
|
||
# Misc | ||
def amp(self): | ||
if hasattr(torch.mlu, 'amp'): | ||
return torch.mlu.amp | ||
return None | ||
|
||
def is_available(self): | ||
return torch.mlu.is_available() | ||
|
||
def range_push(self, msg): | ||
if hasattr(torch.mlu.cnpx, 'range_push'): | ||
return torch.mlu.cnpx.range_push(msg) | ||
|
||
def range_pop(self): | ||
if hasattr(torch.mlu.cnpx, 'range_pop'): | ||
return torch.mlu.cnpx.range_pop() | ||
|
||
def lazy_call(self, callback): | ||
return torch.mlu._lazy_call(callback) | ||
|
||
def communication_backend_name(self): | ||
return self._communication_backend_name | ||
|
||
def is_triton_supported(self): | ||
return True | ||
|
||
# Graph operations | ||
def create_graph(self): | ||
torch.mlu.MLUGraph() | ||
|
||
def capture_to_graph(self, graph, pool=None, stream=None): | ||
return torch.mlu.graph(graph, pool, stream) | ||
|
||
def replay_graph(self, graph): | ||
graph.replay() | ||
return | ||
|
||
# Tensor operations | ||
|
||
@property | ||
def BFloat16Tensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.bfloat16, device='mlu') | ||
|
||
@property | ||
def ByteTensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.uint8, device='mlu') | ||
|
||
@property | ||
def DoubleTensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.double, device='mlu') | ||
|
||
@property | ||
def FloatTensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.float, device='mlu') | ||
|
||
@property | ||
def HalfTensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.half, device='mlu') | ||
|
||
@property | ||
def IntTensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.int, device='mlu') | ||
|
||
@property | ||
def LongTensor(self): | ||
return functools.partial(torch.tensor, dtype=torch.long, device='mlu') | ||
|
||
def pin_memory(self, tensor): | ||
return tensor.pin_memory() | ||
|
||
def is_pinned(self, tensor): | ||
return tensor.is_pinned() | ||
|
||
def on_accelerator(self, tensor): | ||
device_str = str(tensor.device) | ||
if device_str.startswith('mlu:'): | ||
return True | ||
else: | ||
return False | ||
|
||
def op_builder_dir(self): | ||
try: | ||
# is op_builder from deepspeed or a 3p version? this should only succeed if it's deepspeed | ||
# if successful this also means we're doing a local install and not JIT compile path | ||
from op_builder import __deepspeed__ # noqa: F401 # type: ignore | ||
return "op_builder.mlu" | ||
except ImportError: | ||
return "deepspeed.ops.op_builder.mlu" | ||
|
||
def _lazy_init_class_dict(self): | ||
if self.class_dict: | ||
return | ||
|
||
op_builder_module = importlib.import_module(self.op_builder_dir()) | ||
|
||
# get op builder class from op_builder/mlu/__init__.py | ||
self.class_dict = {} | ||
for class_name, class_obj in inspect.getmembers(op_builder_module, inspect.isclass): | ||
self.class_dict[class_name] = class_obj | ||
|
||
# create an instance of op builder and return, name specified by class_name | ||
def create_op_builder(self, class_name): | ||
builder_class = self.get_op_builder(class_name) | ||
return builder_class() | ||
|
||
# return an op builder class, name specified by class_name | ||
def get_op_builder(self, class_name): | ||
self._lazy_init_class_dict() | ||
if class_name in self.class_dict: | ||
return self.class_dict[class_name] | ||
else: | ||
return self.class_dict['NotImplementedBuilder'] | ||
|
||
def build_extension(self): | ||
from torch.utils.cpp_extension import BuildExtension | ||
return BuildExtension | ||
|
||
def export_envs(self): | ||
return ['NEUWARE_HOME', 'CNCL', 'LD_LIBRARY', 'PATH'] | ||
|
||
def visible_devices_envs(self): | ||
return ['MLU_VISIBLE_DEVICES'] | ||
|
||
def set_visible_devices_envs(self, current_env, local_accelerator_ids): | ||
for env in self.visible_devices_envs(): | ||
current_env[env] = ",".join(map(str, local_accelerator_ids)) | ||
|
||
def get_compile_backend(self): | ||
return self._compile_backend | ||
|
||
def set_compile_backend(self, backend): | ||
supported_backends = torch._dynamo.list_backends(exclude_tags=()) | ||
if backend in supported_backends: | ||
self._compile_backend = backend | ||
else: | ||
raise ValueError( | ||
f"{backend} not supported by {self.device_name()}. Supported Backends are {supported_backends }") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
#!/usr/bin/env python3 | ||
|
||
from deepspeed.nvme import ds_io_main | ||
|
||
if __name__ == '__main__': | ||
ds_io_main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,9 @@ | ||
#!/usr/bin/env python3 | ||
|
||
from deepspeed.nvme import sweep_main, generate_main, parse_sweep_arguments | ||
|
||
if __name__ == '__main__': | ||
args = parse_sweep_arguments() | ||
print(f"Running DeepNVMe performance tuning on {args.nvme_dir}") | ||
sweep_main(args) | ||
generate_main(args.log_dir) |
Oops, something went wrong.