Skip to content

Commit

Permalink
rename training_function (#327)
Browse files Browse the repository at this point in the history
* rename training_function

* add docstr

* update docstr

* update docstr and comments

Co-authored-by: Qingyun Wu <[email protected]>
  • Loading branch information
qingyun-wu and PennState-DSML authored Dec 6, 2021
1 parent 3111084 commit dd60dbc
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 10 deletions.
25 changes: 16 additions & 9 deletions flaml/tune/tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ def compute_with_config(config):


def run(
training_function,
evaluation_function,
config: Optional[dict] = None,
low_cost_partial_config: Optional[dict] = None,
cat_hp_cost: Optional[dict] = None,
Expand All @@ -122,7 +122,7 @@ def run(
min_resource: Optional[float] = None,
max_resource: Optional[float] = None,
reduction_factor: Optional[float] = None,
scheduler: Optional = None,
scheduler=None,
search_alg=None,
verbose: Optional[int] = 2,
local_dir: Optional[str] = None,
Expand Down Expand Up @@ -162,7 +162,12 @@ def compute_with_config(config):
print(analysis.trials[-1].last_result)
Args:
training_function: A user-defined training function.
evaluation_function: A user-defined evaluation function.
It takes a configuration as input, outputs a evaluation
result (can be a numerical value or a dictionary of string
and numerical value pairs) for the input configuration.
For machine learning tasks, it usually involves training and
scoring a machine learning model, e.g., through validation loss.
config: A dictionary to specify the search space.
low_cost_partial_config: A dictionary from a subset of
controlled dimensions to the initial low-cost values.
Expand Down Expand Up @@ -195,7 +200,9 @@ def compute_with_config(config):
needing to re-compute the trial. Must be the same length as
points_to_evaluate.
e.g.,
.. code-block:: python
points_to_evaluate = [
{"b": .99, "cost_related": {"a": 3}},
{"b": .99, "cost_related": {"a": 2}},
Expand All @@ -204,7 +211,7 @@ def compute_with_config(config):
means that you know the reward for the two configs in
points_to_evaluate are 3.0 and 1.0 respectively and want to
inform run()
inform run().
resource_attr: A string to specify the resource dimension used by
the scheduler via "scheduler".
Expand All @@ -217,17 +224,17 @@ def compute_with_config(config):
in this case when resource_attr is provided, the 'flaml' scheduler will be
used, otherwise no scheduler will be used. When set 'flaml', an
authentic scheduler implemented in FLAML will be used. It does not
require users to report intermediate results in training_function.
require users to report intermediate results in evaluation_function.
Find more details abuot this scheduler in this paper
https://arxiv.org/pdf/1911.04706.pdf).
When set 'asha', the input for arguments "resource_attr",
"min_resource", "max_resource" and "reduction_factor" will be passed
to ASHA's "time_attr", "max_t", "grace_period" and "reduction_factor"
respectively. You can also provide a self-defined scheduler instance
of the TrialScheduler class. When 'asha' or self-defined scheduler is
used, you usually need to report intermediate results in the training
used, you usually need to report intermediate results in the evaluation
function. Please find examples using different types of schedulers
and how to set up the corresponding training functions in
and how to set up the corresponding evaluation functions in
test/tune/test_scheduler.py. TODO: point to notebook examples.
search_alg: An instance of BlendSearch as the search algorithm
to be used. The same instance can be used for iterative tuning.
Expand Down Expand Up @@ -382,7 +389,7 @@ def compute_with_config(config):
)
_use_ray = True
return tune.run(
training_function,
evaluation_function,
metric=metric,
mode=mode,
search_alg=search_alg,
Expand Down Expand Up @@ -423,7 +430,7 @@ def compute_with_config(config):
num_trials += 1
if verbose:
logger.info(f"trial {num_trials} config: {trial_to_run.config}")
result = training_function(trial_to_run.config)
result = evaluation_function(trial_to_run.config)
if result is not None:
if isinstance(result, dict):
report(**result)
Expand Down
2 changes: 1 addition & 1 deletion notebook/flaml_finetune_transformer.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -893,7 +893,7 @@
" metric=HP_METRIC,\n",
" mode=MODE,\n",
" low_cost_partial_config={\"num_train_epochs\": 1}),\n",
" # uncomment the following if scheduler = 'auto',\n",
" # uncomment the following if scheduler = 'asha',\n",
" # max_resource=max_num_epoch, min_resource=1,\n",
" resources_per_trial={\"gpu\": num_gpus, \"cpu\": num_cpus},\n",
" local_dir='logs/',\n",
Expand Down

0 comments on commit dd60dbc

Please sign in to comment.