Skip to content

Commit

Permalink
added tests for feval
Browse files Browse the repository at this point in the history
  • Loading branch information
StrikerRUS committed Sep 10, 2019
1 parent d20b338 commit c3fbf6b
Show file tree
Hide file tree
Showing 2 changed files with 55 additions and 15 deletions.
46 changes: 33 additions & 13 deletions tests/python_package_test/test_engine.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# coding: utf-8
# pylint: skip-file
import copy
import itertools
import math
import os
import psutil
Expand Down Expand Up @@ -1543,11 +1544,15 @@ def test_get_split_value_histogram(self):

def test_early_stopping_for_only_first_metric(self):

def decreasing_metric(preds, train_data):
return ('decreasing_metric', next(decreasing_generator), False)

def constant_metric(preds, train_data):
return ('constant_metric', 0.0, False)

# test various combination of metrics
def metrics_combination_train_regression(valid_sets, metric_list, assumed_iteration, first_metric_only):
def metrics_combination_train_regression(valid_sets, metric_list, assumed_iteration,
first_metric_only, feval=None):
params = {
'objective': 'regression',
'learning_rate': 1.1,
Expand All @@ -1557,12 +1562,12 @@ def metrics_combination_train_regression(valid_sets, metric_list, assumed_iterat
'seed': 123
}
gbm = lgb.train(dict(params, first_metric_only=first_metric_only), lgb_train,
num_boost_round=25, valid_sets=valid_sets,
num_boost_round=25, valid_sets=valid_sets, feval=feval,
early_stopping_rounds=5, verbose_eval=False)
self.assertEqual(assumed_iteration, gbm.best_iteration)

def metrics_combination_cv_regression(metric_list, assumed_iteration,
first_metric_only, eval_train_metric):
first_metric_only, eval_train_metric, feval=None):
params = {
'objective': 'regression',
'learning_rate': 0.9,
Expand All @@ -1573,27 +1578,20 @@ def metrics_combination_cv_regression(metric_list, assumed_iteration,
'gpu_use_dp': True
}
ret = lgb.cv(dict(params, first_metric_only=first_metric_only),
stratified=False,
train_set=lgb_train,
num_boost_round=25,
train_set=lgb_train, num_boost_round=25,
stratified=False, feval=feval,
early_stopping_rounds=5, verbose_eval=False,
eval_train_metric=eval_train_metric)
self.assertEqual(assumed_iteration, len(ret[list(ret.keys())[0]]))

decreasing_generator = itertools.count(0, -1)
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_test1, X_test2, y_test1, y_test2 = train_test_split(X_test, y_test, test_size=0.5, random_state=73)
lgb_train = lgb.Dataset(X_train, y_train)
lgb_valid1 = lgb.Dataset(X_test1, y_test1, reference=lgb_train)
lgb_valid2 = lgb.Dataset(X_test2, y_test2, reference=lgb_train)

# test that first_metric_only and feval cannot be used together
with np.testing.assert_raises_regex(lgb.basic.LightGBMError,
'`first_metric_only` and `feval` are not available*'):
lgb.train(dict({'objective': 'regression', 'verbose': -1, 'seed': 123}, first_metric_only=True),
lgb_train, num_boost_round=20, valid_sets=[lgb_valid1],
feval=constant_metric, early_stopping_rounds=5, verbose_eval=False)

iter_valid1_l1 = 3
iter_valid1_l2 = 14
iter_valid2_l1 = 2
Expand Down Expand Up @@ -1621,6 +1619,17 @@ def metrics_combination_cv_regression(metric_list, assumed_iteration,
metrics_combination_train_regression(lgb_valid1, ['l2', 'l1'], iter_min_valid1, False)
metrics_combination_train_regression(lgb_valid1, ['l1', 'l2'], iter_min_valid1, False)

# test feval for lgb.train
metrics_combination_train_regression(lgb_valid1, 'None', 1, False,
feval=lambda preds, train_data: [decreasing_metric(preds, train_data),
constant_metric(preds, train_data)])
metrics_combination_train_regression(lgb_valid1, 'None', 25, True,
feval=lambda preds, train_data: [decreasing_metric(preds, train_data),
constant_metric(preds, train_data)])
metrics_combination_train_regression(lgb_valid1, 'None', 1, True,
feval=lambda preds, train_data: [constant_metric(preds, train_data),
decreasing_metric(preds, train_data)])

# test with two valid data for lgb.train
metrics_combination_train_regression([lgb_valid1, lgb_valid2], ['l2', 'l1'], iter_min_l2, True)
metrics_combination_train_regression([lgb_valid2, lgb_valid1], ['l2', 'l1'], iter_min_l2, True)
Expand All @@ -1643,6 +1652,17 @@ def metrics_combination_cv_regression(metric_list, assumed_iteration,
metrics_combination_cv_regression(['l2', 'l1'], iter_cv_min, False, True)
metrics_combination_cv_regression(['l1', 'l2'], iter_cv_min, False, True)

# test feval for lgb.cv
metrics_combination_cv_regression('None', 1, False, False,
feval=lambda preds, train_data: [decreasing_metric(preds, train_data),
constant_metric(preds, train_data)])
metrics_combination_cv_regression('None', 25, True, False,
feval=lambda preds, train_data: [decreasing_metric(preds, train_data),
constant_metric(preds, train_data)])
metrics_combination_cv_regression('None', 1, True, False,
feval=lambda preds, train_data: [constant_metric(preds, train_data),
decreasing_metric(preds, train_data)])

def test_node_level_subcol(self):
X, y = load_breast_cancer(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
Expand Down
24 changes: 22 additions & 2 deletions tests/python_package_test/test_sklearn.py
Original file line number Diff line number Diff line change
Expand Up @@ -640,6 +640,12 @@ def test_nan_handle(self):

def test_first_metric_only(self):

def decreasing_metric(y_true, y_pred):
return ('decreasing_metric', next(decreasing_generator), False)

def constant_metric(y_true, y_pred):
return ('constant_metric', 0.0, False)

def fit_and_check(eval_set_names, metric_names, assumed_iteration, first_metric_only):
params['first_metric_only'] = first_metric_only
gbm = lgb.LGBMRegressor(**params).fit(**params_fit)
Expand All @@ -652,10 +658,12 @@ def fit_and_check(eval_set_names, metric_names, assumed_iteration, first_metric_

actual = len(gbm.evals_result_[eval_set_name][metric_name])
expected = assumed_iteration + (params_fit['early_stopping_rounds']
if eval_set_name != 'training' else 0)
if eval_set_name != 'training'
and assumed_iteration != gbm.n_estimators else 0)
self.assertEqual(expected, actual)
self.assertEqual(assumed_iteration if eval_set_name != 'training' else 0, gbm.best_iteration_)

decreasing_generator = itertools.count(0, -1)
X, y = load_boston(True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
X_test1, X_test2, y_test1, y_test2 = train_test_split(X_test, y_test, test_size=0.5, random_state=72)
Expand Down Expand Up @@ -684,8 +692,20 @@ def fit_and_check(eval_set_names, metric_names, assumed_iteration, first_metric_
fit_and_check(['training'], ['l2'], 30, False)
fit_and_check(['training'], ['l2'], 30, True)

# single eval_set
# feval
params['metric'] = 'None'
params_fit['eval_metric'] = lambda preds, train_data: [decreasing_metric(preds, train_data),
constant_metric(preds, train_data)]
params_fit['eval_set'] = (X_test1, y_test1)
fit_and_check(['valid_0'], ['decreasing_metric', 'constant_metric'], 1, False)
fit_and_check(['valid_0'], ['decreasing_metric', 'constant_metric'], 30, True)
params_fit['eval_metric'] = lambda preds, train_data: [constant_metric(preds, train_data),
decreasing_metric(preds, train_data)]
fit_and_check(['valid_0'], ['decreasing_metric', 'constant_metric'], 1, True)

# single eval_set
params.pop('metric')
params_fit.pop('eval_metric')
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, False)
fit_and_check(['valid_0'], ['l2'], iter_valid1_l2, True)

Expand Down

0 comments on commit c3fbf6b

Please sign in to comment.