Skip to content

Commit

Permalink
[python] [dask] add initial dask integration (#3515)
Browse files Browse the repository at this point in the history
* migrated implementation from dask/dask-lightgbm

* relaxed tests

* tests skipped in case that MPI is used

* fixed python 2.7 import + tests disabled on windows

* python < 3.6 is not supported in tests

* tests enabled only for linux

* tests disabled for mpi interface

* dask version pinned to >= 2.0

* added @jameslamb as code owner

* added missing pandas dependency

* code refactoring, removed code duplication - lightgbm.dask.LGBMClassifier.fit is the same as lightgbm.dask.LGBMRegressor.fit

* fixed refactoring

* code deduplication - fit method moved into mixin class

* fixed CODEOWNERS

* removed unnecessary import

* skip the module execution on python < 3.6 and on platform different than linux.

* removed skip for python < 3.6

* review comments

* removed noqa, renamed API classes, renamed local variables
  • Loading branch information
SfinxCZ authored Dec 22, 2020
1 parent d59ffdb commit d90a16d
Show file tree
Hide file tree
Showing 5 changed files with 505 additions and 1 deletion.
2 changes: 1 addition & 1 deletion .ci/test.sh
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ if [[ $TASK == "if-else" ]]; then
exit 0
fi

conda install -q -y -n $CONDA_ENV joblib matplotlib numpy pandas psutil pytest python-graphviz scikit-learn scipy
conda install -q -y -n $CONDA_ENV dask dask-ml distributed joblib matplotlib numpy pandas psutil pytest python-graphviz scikit-learn scipy

if [[ $OS_NAME == "macos" ]] && [[ $COMPILER == "clang" ]]; then
# fix "OMP: Error #15: Initializing libiomp5.dylib, but found libomp.dylib already initialized." (OpenMP library conflict due to conda's MKL)
Expand Down
4 changes: 4 additions & 0 deletions .github/CODEOWNERS
Validating CODEOWNERS rules …
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,10 @@ R-package/ @Laurae2 @jameslamb
# Python code
python-package/ @StrikerRUS @chivee @wxchan @henry0312

# Dask integration
python-package/lightgbm/dask.py @jameslamb
tests/python_package_test/test_dask.py @jameslamb

# helpers
helpers/ @StrikerRUS @guolinke

Expand Down
280 changes: 280 additions & 0 deletions python-package/lightgbm/dask.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
# coding: utf-8
"""Distributed training with LightGBM and Dask.distributed.
This module enables you to perform distributed training with LightGBM on Dask.Array and Dask.DataFrame collections.
It is based on dask-xgboost package.
"""
import logging
from collections import defaultdict
from urllib.parse import urlparse

import numpy as np
import pandas as pd
from dask import array as da
from dask import dataframe as dd
from dask import delayed
from dask.distributed import default_client, get_worker, wait

from .basic import _LIB, _safe_call
from .sklearn import LGBMClassifier, LGBMRegressor

import scipy.sparse as ss

logger = logging.getLogger(__name__)


def _parse_host_port(address):
parsed = urlparse(address)
return parsed.hostname, parsed.port


def _build_network_params(worker_addresses, local_worker_ip, local_listen_port, time_out):
"""Build network parameters suitable for LightGBM C backend.
Parameters
----------
worker_addresses : iterable of str - collection of worker addresses in `<protocol>://<host>:port` format
local_worker_ip : str
local_listen_port : int
time_out : int
Returns
-------
params: dict
"""
addr_port_map = {addr: (local_listen_port + i) for i, addr in enumerate(worker_addresses)}
params = {
'machines': ','.join('%s:%d' % (_parse_host_port(addr)[0], port) for addr, port in addr_port_map.items()),
'local_listen_port': addr_port_map[local_worker_ip],
'time_out': time_out,
'num_machines': len(addr_port_map)
}
return params


def _concat(seq):
if isinstance(seq[0], np.ndarray):
return np.concatenate(seq, axis=0)
elif isinstance(seq[0], (pd.DataFrame, pd.Series)):
return pd.concat(seq, axis=0)
elif isinstance(seq[0], ss.spmatrix):
return ss.vstack(seq, format='csr')
else:
raise TypeError('Data must be one of: numpy arrays, pandas dataframes, sparse matrices (from scipy). Got %s.' % str(type(seq[0])))


def _train_part(params, model_factory, list_of_parts, worker_addresses, return_model, local_listen_port=12400,
time_out=120, **kwargs):
network_params = _build_network_params(worker_addresses, get_worker().address, local_listen_port, time_out)
params.update(network_params)

# Concatenate many parts into one
parts = tuple(zip(*list_of_parts))
data = _concat(parts[0])
label = _concat(parts[1])
weight = _concat(parts[2]) if len(parts) == 3 else None

try:
model = model_factory(**params)
model.fit(data, label, sample_weight=weight, **kwargs)
finally:
_safe_call(_LIB.LGBM_NetworkFree())

return model if return_model else None


def _split_to_parts(data, is_matrix):
parts = data.to_delayed()
if isinstance(parts, np.ndarray):
assert (parts.shape[1] == 1) if is_matrix else (parts.ndim == 1 or parts.shape[1] == 1)
parts = parts.flatten().tolist()
return parts


def _train(client, data, label, params, model_factory, weight=None, **kwargs):
"""Inner train routine.
Parameters
----------
client: dask.Client - client
X : dask array of shape = [n_samples, n_features]
Input feature matrix.
y : dask array of shape = [n_samples]
The target values (class labels in classification, real numbers in regression).
params : dict
model_factory : lightgbm.LGBMClassifier or lightgbm.LGBMRegressor class
sample_weight : array-like of shape = [n_samples] or None, optional (default=None)
Weights of training data.
"""
# Split arrays/dataframes into parts. Arrange parts into tuples to enforce co-locality
data_parts = _split_to_parts(data, is_matrix=True)
label_parts = _split_to_parts(label, is_matrix=False)
if weight is None:
parts = list(map(delayed, zip(data_parts, label_parts)))
else:
weight_parts = _split_to_parts(weight, is_matrix=False)
parts = list(map(delayed, zip(data_parts, label_parts, weight_parts)))

# Start computation in the background
parts = client.compute(parts)
wait(parts)

for part in parts:
if part.status == 'error':
return part # trigger error locally

# Find locations of all parts and map them to particular Dask workers
key_to_part_dict = dict([(part.key, part) for part in parts])
who_has = client.who_has(parts)
worker_map = defaultdict(list)
for key, workers in who_has.items():
worker_map[next(iter(workers))].append(key_to_part_dict[key])

master_worker = next(iter(worker_map))
worker_ncores = client.ncores()

if 'tree_learner' not in params or params['tree_learner'].lower() not in {'data', 'feature', 'voting'}:
logger.warning('Parameter tree_learner not set or set to incorrect value '
'(%s), using "data" as default', params.get("tree_learner", None))
params['tree_learner'] = 'data'

# Tell each worker to train on the parts that it has locally
futures_classifiers = [client.submit(_train_part,
model_factory=model_factory,
params={**params, 'num_threads': worker_ncores[worker]},
list_of_parts=list_of_parts,
worker_addresses=list(worker_map.keys()),
local_listen_port=params.get('local_listen_port', 12400),
time_out=params.get('time_out', 120),
return_model=(worker == master_worker),
**kwargs)
for worker, list_of_parts in worker_map.items()]

results = client.gather(futures_classifiers)
results = [v for v in results if v]
return results[0]


def _predict_part(part, model, proba, **kwargs):
data = part.values if isinstance(part, pd.DataFrame) else part

if data.shape[0] == 0:
result = np.array([])
elif proba:
result = model.predict_proba(data, **kwargs)
else:
result = model.predict(data, **kwargs)

if isinstance(part, pd.DataFrame):
if proba:
result = pd.DataFrame(result, index=part.index)
else:
result = pd.Series(result, index=part.index, name='predictions')

return result


def _predict(model, data, proba=False, dtype=np.float32, **kwargs):
"""Inner predict routine.
Parameters
----------
model :
data : dask array of shape = [n_samples, n_features]
Input feature matrix.
proba : bool
Should method return results of predict_proba (proba == True) or predict (proba == False)
dtype : np.dtype
Dtype of the output
kwargs : other parameters passed to predict or predict_proba method
"""
if isinstance(data, dd._Frame):
return data.map_partitions(_predict_part, model=model, proba=proba, **kwargs).values
elif isinstance(data, da.Array):
if proba:
kwargs['chunks'] = (data.chunks[0], (model.n_classes_,))
else:
kwargs['drop_axis'] = 1
return data.map_blocks(_predict_part, model=model, proba=proba, dtype=dtype, **kwargs)
else:
raise TypeError('Data must be either Dask array or dataframe. Got %s.' % str(type(data)))


class _LGBMModel:

def _fit(self, model_factory, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the LGBMModel."""
if client is None:
client = default_client()

params = self.get_params(True)
model = _train(client, X, y, params, model_factory, sample_weight, **kwargs)

self.set_params(**model.get_params())
self._copy_extra_params(model, self)

return self

def _to_local(self, model_factory):
model = model_factory(**self.get_params())
self._copy_extra_params(self, model)
return model

@staticmethod
def _copy_extra_params(source, dest):
params = source.get_params()
attributes = source.__dict__
extra_param_names = set(attributes.keys()).difference(params.keys())
for name in extra_param_names:
setattr(dest, name, attributes[name])


class DaskLGBMClassifier(_LGBMModel, LGBMClassifier):
"""Distributed version of lightgbm.LGBMClassifier."""

def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the LGBMModel."""
return self._fit(LGBMClassifier, X, y, sample_weight, client, **kwargs)
fit.__doc__ = LGBMClassifier.fit.__doc__

def predict(self, X, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict."""
return _predict(self.to_local(), X, dtype=self.classes_.dtype, **kwargs)
predict.__doc__ = LGBMClassifier.predict.__doc__

def predict_proba(self, X, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMClassifier.predict_proba."""
return _predict(self.to_local(), X, proba=True, **kwargs)
predict_proba.__doc__ = LGBMClassifier.predict_proba.__doc__

def to_local(self):
"""Create regular version of lightgbm.LGBMClassifier from the distributed version.
Returns
-------
model : lightgbm.LGBMClassifier
"""
return self._to_local(LGBMClassifier)


class DaskLGBMRegressor(_LGBMModel, LGBMRegressor):
"""Docstring is inherited from the lightgbm.LGBMRegressor."""

def fit(self, X, y=None, sample_weight=None, client=None, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMRegressor.fit."""
return self._fit(LGBMRegressor, X, y, sample_weight, client, **kwargs)
fit.__doc__ = LGBMRegressor.fit.__doc__

def predict(self, X, **kwargs):
"""Docstring is inherited from the lightgbm.LGBMRegressor.predict."""
return _predict(self.to_local(), X, **kwargs)
predict.__doc__ = LGBMRegressor.predict.__doc__

def to_local(self):
"""Create regular version of lightgbm.LGBMRegressor from the distributed version.
Returns
-------
model : lightgbm.LGBMRegressor
"""
return self._to_local(LGBMRegressor)
8 changes: 8 additions & 0 deletions python-package/setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -340,6 +340,14 @@ def run(self):
'scipy',
'scikit-learn!=0.22.0'
],
extras_require={
'dask': [
'dask[array]>=2.0.0',
'dask[dataframe]>=2.0.0'
'dask[distributed]>=2.0.0',
'pandas',
],
},
maintainer='Guolin Ke',
maintainer_email='[email protected]',
zip_safe=False,
Expand Down
Loading

0 comments on commit d90a16d

Please sign in to comment.