Skip to content

Commit

Permalink
chore: Update to version 1.0.3 (#2183)
Browse files Browse the repository at this point in the history
Co-authored-by: Mark Hamilton <[email protected]>
  • Loading branch information
BrendanWalsh and mhamilton723 authored Mar 22, 2024
1 parent 9aea411 commit 964ebfc
Show file tree
Hide file tree
Showing 137 changed files with 22,596 additions and 128 deletions.
14 changes: 7 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ In Azure Synapse notebooks please place the following in the first cell of your
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.2",
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.3",
"spark.jars.repositories": "https://mmlspark.azureedge.net/maven",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind",
"spark.yarn.user.classpath.first": "true",
Expand Down Expand Up @@ -175,7 +175,7 @@ the above example, or from python:
```python
import pyspark
spark = pyspark.sql.SparkSession.builder.appName("MyApp") \
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.2") \
.config("spark.jars.packages", "com.microsoft.azure:synapseml_2.12:1.0.3") \
.getOrCreate()
import synapse.ml
```
Expand All @@ -186,9 +186,9 @@ SynapseML can be conveniently installed on existing Spark clusters via the
`--packages` option, examples:

```bash
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.2
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.2
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.2 MyApp.jar
spark-shell --packages com.microsoft.azure:synapseml_2.12:1.0.3
pyspark --packages com.microsoft.azure:synapseml_2.12:1.0.3
spark-submit --packages com.microsoft.azure:synapseml_2.12:1.0.3 MyApp.jar
```

### SBT
Expand All @@ -197,7 +197,7 @@ If you are building a Spark application in Scala, add the following lines to
your `build.sbt`:

```scala
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.2"
libraryDependencies += "com.microsoft.azure" % "synapseml_2.12" % "1.0.3"
```

### Apache Livy and HDInsight
Expand All @@ -211,7 +211,7 @@ Excluding certain packages from the library may be necessary due to current issu
{
"name": "synapseml",
"conf": {
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.2",
"spark.jars.packages": "com.microsoft.azure:synapseml_2.12:1.0.3",
"spark.jars.excludes": "org.scala-lang:scala-reflect,org.apache.spark:spark-tags_2.12,org.scalactic:scalactic_2.12,org.scalatest:scalatest_2.12,com.fasterxml.jackson.core:jackson-databind"
}
}
Expand Down
2 changes: 1 addition & 1 deletion build.sbt
Original file line number Diff line number Diff line change
Expand Up @@ -224,7 +224,7 @@ publishDotnetBase := {
packDotnetAssemblyCmd(join(dotnetBaseDir, "target").getAbsolutePath, dotnetBaseDir)
val packagePath = join(dotnetBaseDir,
// Update the version whenever there's a new release
"target", s"SynapseML.DotnetBase.${dotnetedVersion("1.0.2")}.nupkg").getAbsolutePath
"target", s"SynapseML.DotnetBase.${dotnetedVersion("1.0.3")}.nupkg").getAbsolutePath
publishDotnetAssemblyCmd(packagePath, genSleetConfig.value)
}

Expand Down
2 changes: 1 addition & 1 deletion core/src/main/dotnet/src/dotnetBase.csproj
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@
<IsPackable>true</IsPackable>

<Description>SynapseML .NET Base</Description>
<Version>1.0.2</Version>
<Version>1.0.3</Version>
</PropertyGroup>

<ItemGroup>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ object DotnetCodegen {
|
| <ItemGroup>
| <PackageReference Include="Microsoft.Spark" Version="2.1.1" />
| <PackageReference Include="SynapseML.DotnetBase" Version="1.0.2" />
| <PackageReference Include="SynapseML.DotnetBase" Version="1.0.3" />
| <PackageReference Include="IgnoresAccessChecksToGenerator" Version="0.4.0" PrivateAssets="All" />
| $newtonsoftDep
| </ItemGroup>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,7 @@ object DotnetTestGen {
| <IncludeAssets>runtime; build; native; contentfiles; analyzers</IncludeAssets>
| </PackageReference>
| <PackageReference Include="Microsoft.Spark" Version="2.1.1" />
| <PackageReference Include="SynapseML.DotnetBase" Version="1.0.2" />
| <PackageReference Include="SynapseML.DotnetBase" Version="1.0.3" />
| <PackageReference Include="SynapseML.DotnetE2ETest" Version="${conf.dotnetVersion}" />
| <PackageReference Include="SynapseML.$curProject" Version="${conf.dotnetVersion}" />
| $referenceCore
Expand Down
78 changes: 39 additions & 39 deletions docs/Explore Algorithms/AI Services/Overview.ipynb

Large diffs are not rendered by default.

4 changes: 2 additions & 2 deletions docs/Explore Algorithms/Deep Learning/Getting Started.md
Original file line number Diff line number Diff line change
Expand Up @@ -21,12 +21,12 @@ Restarting the cluster automatically installs horovod v0.25.0 with pytorch_light
You could install the single synapseml-deep-learning wheel package to get the full functionality of deep vision classification.
Run the following command:
```powershell
pip install synapseml==1.0.2
pip install synapseml==1.0.3
```

An alternative is installing the SynapseML jar package in library management section, by adding:
```
Coordinate: com.microsoft.azure:synapseml_2.12:1.0.2
Coordinate: com.microsoft.azure:synapseml_2.12:1.0.3
Repository: https://mmlspark.azureedge.net/maven
```
:::note
Expand Down
24 changes: 12 additions & 12 deletions docs/Explore Algorithms/Other Algorithms/Cyber ML.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,65 +18,65 @@ sidebar_label: CyberML
In other words, it returns a sample from the complement set.

## feature engineering: [indexers.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/feature/indexers.py)
1. [IdIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexer)
1. [IdIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexer)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe, it creates an IdIndexerModel (described next) for categorical features. The model
maps each partition and column seen in the given dataframe to an ID,
for each partition or one consecutive range for all partition and column values.
2. [IdIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexerModel)
2. [IdIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.IdIndexerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe maps each partition and column field to a consecutive integer ID.
Partitions or column values not encountered in the estimator are mapped to 0.
The model can operate in two modes, either create consecutive integer ID independently
3. [MultiIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexer)
3. [MultiIndexer](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexer)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Uses multiple IdIndexers to generate a MultiIndexerModel (described next) for categorical features. The model
contains multiple IdIndexers for multiple partitions and columns.
4. [MultiIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexerModel)
4. [MultiIndexerModel](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.indexers.MultiIndexerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe maps each partition and column field to a consecutive integer ID.
Partitions or column values not encountered in the estimator are mapped to 0.
The model can operate in two modes, either create consecutive integer ID independently

## feature engineering: [scalers.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/feature/scalers.py)
1. [StandardScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScaler)
1. [StandardScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScaler)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe it creates a StandardScalarScalerModel (described next) which normalizes
any given dataframe according to the mean and standard deviation calculated on the
dataframe given to the estimator.
2. [StandardScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScalerModel)
2. [StandardScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.StandardScalarScalerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe with a value column x, the transformer changes its value as follows:
x'=(x-mean)/stddev. That is, if the transformer is given the same dataframe the estimator
was given then the value column will have a mean of 0.0 and a standard deviation of 1.0.
3. [LinearScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScaler)
3. [LinearScalarScaler](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScaler)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe it creates a LinearScalarScalerModel (described next) which normalizes
any given dataframe according to the minimum and maximum values calculated on the
dataframe given to the estimator.
4. [LinearScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScalerModel)
4. [LinearScalarScalerModel](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.feature.html#synapse.ml.cyber.feature.scalers.LinearScalarScalerModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe with a value column x, the transformer changes its value such that
if the transformer is given the same dataframe the estimator
was given then the value column will be scaled linearly to the given ranges.

## access anomalies: [collaborative_filtering.py](https://github.com/microsoft/SynapseML/blob/master/core/src/main/python/synapse/ml/cyber/anomaly/collaborative_filtering.py)
1. [AccessAnomaly](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomaly)
1. [AccessAnomaly](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomaly)
is a SparkML [Estimator](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Estimator.html).
Given a dataframe, the estimator generates an AccessAnomalyModel (described next). The model
can detect anomalous access of users to resources where the access
is outside of the user's or resources's profile. For instance, a user from HR accessing
a resource from Finance. This result is based solely on access patterns rather than explicit features.
Internally, the code is based on Collaborative Filtering as implemented in Spark, using
Matrix Factorization with Alternating Least Squares.
2. [AccessAnomalyModel](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyModel)
2. [AccessAnomalyModel](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyModel)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
Given a dataframe the transformer computes a value between (-inf, inf) where positive
values indicate an anomaly score. Anomaly scores are computed to have a mean of 1.0
and a standard deviation of 1.0 over the original dataframe given to the estimator.
3. [ModelNormalizeTransformer](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.ModelNormalizeTransformer)
3. [ModelNormalizeTransformer](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.ModelNormalizeTransformer)
is a SparkML [Transformer](https://spark.apache.org/docs/2.2.0/api/java/index.html?org/apache/spark/ml/Transformer.html).
This transformer is used internally by AccessAnomaly to normalize a model to generate
anomaly scores with mean 0.0 and standard deviation of 1.0.
4. [AccessAnomalyConfig](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyConfig)
4. [AccessAnomalyConfig](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.cyber.anomaly.html#synapse.ml.cyber.anomaly.collaborative_filtering.AccessAnomalyConfig)
contains the default values for AccessAnomaly.
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
"# Create an Azure Databricks cluster and install the following libs\n",
"\n",
"1. In Cluster Libraries install from library source Maven:\n",
"Coordinates: com.microsoft.azure:synapseml_2.12:1.0.2\n",
"Coordinates: com.microsoft.azure:synapseml_2.12:1.0.3\n",
"Repository: https://mmlspark.azureedge.net/maven\n",
"\n",
"2. In Cluster Libraries install from PyPI the library called plotly"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,11 +16,11 @@
"\n",
"This sample demonstrates how to use the following APIs:\n",
"- [`TrainRegressor`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
"- [`ComputePerInstanceStatistics`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputePerInstanceStatistics)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputePerInstanceStatistics)\n",
"- [`DataConversion`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.DataConversion)"
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.DataConversion)"
]
},
{
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -15,15 +15,15 @@
"\n",
"This sample demonstrates the use of several members of the synapseml library:\n",
"- [`TrainRegressor`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.train.html?#module-synapse.ml.train.TrainRegressor)\n",
"- [`SummarizeData`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.stages.html?#module-synapse.ml.stages.SummarizeData)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.stages.html?#module-synapse.ml.stages.SummarizeData)\n",
"- [`CleanMissingData`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.CleanMissingData)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.featurize.html?#module-synapse.ml.featurize.CleanMissingData)\n",
"- [`ComputeModelStatistics`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputeModelStatistics)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.train.html?#module-synapse.ml.train.ComputeModelStatistics)\n",
"- [`FindBestModel`\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.2/pyspark/synapse.ml.automl.html?#module-synapse.ml.automl.FindBestModel)\n",
" ](https://mmlspark.blob.core.windows.net/docs/1.0.3/pyspark/synapse.ml.automl.html?#module-synapse.ml.automl.FindBestModel)\n",
"\n",
"First, import the pandas package so that we can read and parse the datafile\n",
"using `pandas.read_csv()`"
Expand Down
Loading

0 comments on commit 964ebfc

Please sign in to comment.