Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for matrix-valued latitudes and longitudes #43

Merged
merged 1 commit into from
Oct 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 19 additions & 4 deletions aurora/batch.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,15 +42,30 @@ class Metadata:
rollout_step: int = 0

def __post_init__(self):
if not torch.all(self.lat[1:] - self.lat[:-1] < 0):
raise ValueError("Latitudes must be strictly decreasing.")
if not (torch.all(self.lat <= 90) and torch.all(self.lat >= -90)):
raise ValueError("Latitudes must be in the range [-90, 90].")
if not torch.all(self.lon[1:] - self.lon[:-1] > 0):
raise ValueError("Longitudes must be strictly increasing.")
if not (torch.all(self.lon >= 0) and torch.all(self.lon < 360)):
raise ValueError("Longitudes must be in the range [0, 360).")

# Validate vector-valued latitudes and longitudes:
if self.lat.dim() == self.lon.dim() == 1:
if not torch.all(self.lat[1:] - self.lat[:-1] < 0):
raise ValueError("Latitudes must be strictly decreasing.")
if not torch.all(self.lon[1:] - self.lon[:-1] > 0):
raise ValueError("Longitudes must be strictly increasing.")

# Validate matrix-valued latitudes and longitudes:
elif self.lat.dim() == self.lon.dim() == 2:
if not torch.all(self.lat[1:, :] - self.lat[:-1, :]):
raise ValueError("Latitudes must be strictly decreasing along every column.")
if not torch.all(self.lon[:, 1:] - self.lon[:, :-1] > 0):
raise ValueError("Longitudes must be strictly increasing along every row.")

else:
raise ValueError(
"The latitudes and longitudes must either both be vectors or both be matrices."
)


@dataclasses.dataclass
class Batch:
Expand Down
4 changes: 4 additions & 0 deletions docs/batch.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,9 +101,13 @@ The following atmospheric variables are allows:
The latitudes must be _decreasing_.
The latitudes can either include both endpoints, like `linspace(90, -90, 721)`,
or not include the south pole, like `linspace(90, -90, 721)[:-1]`.
For curvilinear grids, this can also be a matrix, in which case the foregoing conditions
apply to every _column_.
* `Metadata.lon` is the vector of longitudes.
The longitudes must be _increasing_.
The longitudes must be in the range `[0, 360)`, so they can include zero and cannot include 360.
For curvilinear grids, this can also be a matrix, in which case the foregoing conditions
apply to every _row_.
* `Metadata.atmos_levels` is a `tuple` of the pressure levels of the atmospheric variables in hPa.
Note that these levels must be in exactly correspond to the order of the atmospheric variables.
Note also that `Metadata.atmos_levels` should be a `tuple`, not a `list`.
Expand Down
62 changes: 53 additions & 9 deletions tests/test_model.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,32 @@
"""Copyright (c) Microsoft Corporation. Licensed under the MIT license."""

import numpy as np
import pytest
import torch

from tests.conftest import SavedBatch

from aurora import AuroraSmall, Batch
from aurora import Aurora, AuroraSmall, Batch


def test_aurora_small(test_input_output: tuple[Batch, SavedBatch]) -> None:
batch, test_output = test_input_output

@pytest.fixture()
def aurora_small() -> Aurora:
model = AuroraSmall(use_lora=True)

# Load the checkpoint and run the model.
model.load_checkpoint(
"microsoft/aurora",
"aurora-0.25-small-pretrained.ckpt",
strict=False, # LoRA parameters not available.
)
model = model.double()
model.eval()
return model


def test_aurora_small(aurora_small: Aurora, test_input_output: tuple[Batch, SavedBatch]) -> None:
batch, test_output = test_input_output

with torch.inference_mode():
pred = model.forward(batch)
pred = aurora_small.forward(batch)

def assert_approx_equality(v_out: np.ndarray, v_ref: np.ndarray, tol: float) -> None:
err = np.abs(v_out - v_ref).mean()
Expand Down Expand Up @@ -69,10 +73,50 @@ def assert_approx_equality(v_out: np.ndarray, v_ref: np.ndarray, tol: float) ->


def test_aurora_small_decoder_init() -> None:
model = AuroraSmall(use_lora=True)
aurora_small = AuroraSmall(use_lora=True)

# Check that the decoder heads are properly initialised. The biases should be zero, but the
# weights shouldn't.
for layer in [*model.decoder.surf_heads.values(), *model.decoder.atmos_heads.values()]:
for layer in [
*aurora_small.decoder.surf_heads.values(),
*aurora_small.decoder.atmos_heads.values(),
]:
assert not torch.all(layer.weight == 0)
assert torch.all(layer.bias == 0)


def test_aurora_small_lat_lon_matrices(
aurora_small: Aurora, test_input_output: tuple[Batch, SavedBatch]
) -> None:
batch, test_output = test_input_output

with torch.inference_mode():
pred = aurora_small.forward(batch)

# Modify the batch to have a latitude and longitude matrices.
n_lat = len(batch.metadata.lat)
n_lon = len(batch.metadata.lon)
batch.metadata.lat = batch.metadata.lat[:, None].expand(n_lat, n_lon)
batch.metadata.lon = batch.metadata.lon[None, :].expand(n_lat, n_lon)

pred_matrix = aurora_small.forward(batch)

# Check the outputs.
for k in pred.surf_vars:
np.testing.assert_allclose(
pred.surf_vars[k],
pred_matrix.surf_vars[k],
rtol=1e-5,
)
for k in pred.static_vars:
np.testing.assert_allclose(
pred.static_vars[k],
pred_matrix.static_vars[k],
rtol=1e-5,
)
for k in pred.atmos_vars:
np.testing.assert_allclose(
pred.atmos_vars[k],
pred_matrix.atmos_vars[k],
rtol=1e-5,
)
Loading