-
Notifications
You must be signed in to change notification settings - Fork 36
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
separare CI/demo/tests. Shaping up for PR
- Loading branch information
Showing
5 changed files
with
350 additions
and
334 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,4 @@ | ||
*.pyc | ||
*.swp | ||
build | ||
tests/.cache |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,236 @@ | ||
from __future__ import division | ||
from fenicstools import clement_interpolate | ||
import numpy as np | ||
from dolfin import * | ||
|
||
|
||
RED = '\033[1;37;31m%s\033[0m' | ||
|
||
def demo_ci_1d(which, mesh='uniform', with_plot=False): | ||
'''Show of L2 order of convergence for some predefined test cases in 1d.''' | ||
# NOTE: The interpolant is CG1 and first order in L2 is expected if the | ||
# expression is bounded in H1 norm. In the examples order 1.5 is observed on | ||
# both meshes | ||
from math import log as ln | ||
|
||
u0 = 'sin(4*pi*x[0])' | ||
v0 = 'x[0]*x[0]' | ||
|
||
cases = {0: (lambda u, v: inner(Dx(u, 0), Dx(u, 0)) + v, | ||
Expression('16*pi*pi*cos(4*pi*x[0])*cos(4*pi*x[0])+x[0]*x[0]', degree=8)), | ||
1: (lambda u, v: inner(as_vector((u, Dx(u, 0), Dx(Dx(u, 0), 0))), | ||
as_vector((u, Dx(u, 0), Dx(Dx(u, 0), 0))))+\ | ||
inner(Constant(0), v), | ||
Expression('''sin(4*pi*x[0])*sin(4*pi*x[0])+ | ||
16*pi*pi*cos(4*pi*x[0])*cos(4*pi*x[0])+ | ||
256*pi*pi*pi*pi*sin(4*pi*x[0])*sin(4*pi*x[0])''', degree=8)) | ||
} | ||
|
||
expr, exact = cases[which] | ||
mesh = UnitIntervalMesh(128) | ||
if not mesh == 'uniform': | ||
mesh.coordinates()[:] = np.sin(mesh.coordinates()[:]) | ||
|
||
e0, h0, dim0 = None, None, None | ||
table = ['\t\t'.join(['h', 'e', RED % 'EOC', 'Time', 'len(Ih)', RED % 'Scaling'])] | ||
print table[-1] | ||
for _ in range(8): | ||
U = FunctionSpace(mesh, 'CG', 2) | ||
V = FunctionSpace(mesh, 'CG', 1) | ||
W = MixedFunctionSpace([U, V]) | ||
w = interpolate(Expression((u0, v0), degree=3), W) | ||
u, v = w.split() | ||
|
||
# How long it takes to construct the interpolant | ||
timer = Timer('CI') | ||
uh = clement_interpolate(expr(u, v)) | ||
t = timer.stop() | ||
# Error | ||
e = errornorm(exact, uh, 'L2', mesh=mesh) | ||
|
||
h = mesh.hmin() | ||
dim = uh.function_space().dim() | ||
if e0 is not None: | ||
rate = ln(e/e0)/ln(h/h0) | ||
scale = ln(t/t0)/ln(dim/dim0) | ||
fmt = ['%3f' % arg for arg in (h, e, t, dim)] | ||
fmt.insert(2, RED % ('%3f' % rate)) | ||
fmt.append(RED % ('%3f' % scale)) | ||
table.append('\t'.join(fmt)) | ||
print table[-1] | ||
|
||
|
||
e0, h0, t0, dim0 = e, h, t, dim | ||
mesh = refine(mesh) | ||
|
||
print 'Final interpolant has %d dofs' % uh.function_space().dim() | ||
|
||
if with_plot and len(uh.ufl_shape) < 2: | ||
e = interpolate(exact, uh.function_space()) | ||
e.vector().axpy(-1, uh.vector()) | ||
plot(e, title='Error') | ||
interactive() | ||
|
||
return table | ||
|
||
|
||
def demo_ci_2d(which, mesh='uniform', with_plot=False): | ||
'''Show of L2 order of convergence for some predefined test cases in 2d.''' | ||
# NOTE: The interpolant is CG1 and first order in L2 is expected if the | ||
# expression is bounded in H1 norm. In the examples order 1.5 is observed on | ||
# both meshes | ||
from math import log as ln | ||
import mshr | ||
|
||
u0 = Expression(('x[0]', 'x[1]'), degree=1) | ||
v0 = Expression('x[0]*x[1]', degree=2) | ||
|
||
cases = {0: (lambda u, v: sin(inner(u, grad(v))), | ||
Expression('sin(2*x[0]*x[1])', degree=4)), | ||
1: (lambda u, v: outer(u, grad(v)), | ||
Expression((('x[0]*x[1]', 'x[0]*x[0]'), | ||
('x[1]*x[1]', 'x[0]*x[1]')), degree=4)), | ||
2: (lambda u, v: div(outer(u, grad(v))), | ||
Expression(('x[1]', 'x[0]'), degree=4)), | ||
3: (lambda u, v: tr(outer(u, grad(v))), | ||
Expression('2*x[0]*x[1]', degree=4))} | ||
|
||
expr, exact = cases[which] | ||
if mesh == 'uniform': mesh = UnitSquareMesh(4, 4) | ||
else: mesh = mshr.generate_mesh(mshr.Rectangle(Point(0, 0), Point(1, 1)), 3) | ||
|
||
e0, h0, dim0 = None, None, None | ||
table = ['\t\t'.join(['h', 'e', RED % 'EOC', 'Time', 'len(Ih)', RED % 'Scaling'])] | ||
print table[-1] | ||
for _ in range(8): | ||
U = VectorFunctionSpace(mesh, 'CG', 1) | ||
u = interpolate(u0, U) | ||
|
||
V = FunctionSpace(mesh, 'CG', 2) | ||
v = interpolate(v0, V) | ||
|
||
# How long it takes to construct the interpolant | ||
timer = Timer('CI') | ||
uh = clement_interpolate(expr(u, v)) | ||
t = timer.stop() | ||
# Error | ||
e = errornorm(exact, uh, 'L2', mesh=mesh) | ||
|
||
h = mesh.hmin() | ||
dim = uh.function_space().dim() | ||
if e0 is not None: | ||
rate = ln(e/e0)/ln(h/h0) | ||
scale = ln(t/t0)/ln(dim/dim0) | ||
fmt = ['%3f' % arg for arg in (h, e, t, dim)] | ||
fmt.insert(2, RED % ('%3f' % rate)) | ||
fmt.append(RED % ('%3f' % scale)) | ||
table.append('\t'.join(fmt)) | ||
print table[-1] | ||
|
||
e0, h0, t0, dim0 = e, h, t, dim | ||
mesh = refine(mesh) | ||
|
||
print 'Final interpolant has %d dofs' % uh.function_space().dim() | ||
|
||
if with_plot and len(uh.ufl_shape) < 2: | ||
e = interpolate(exact, uh.function_space()) | ||
e.vector().axpy(-1, uh.vector()) | ||
plot(e, title='Error') | ||
interactive() | ||
|
||
return table | ||
|
||
|
||
def demo_ci_3d(which, mesh='uniform', with_plot=False): | ||
'''Show of L2 order of convergence for some predefined test cases in 3d.''' | ||
# NOTE: The interpolant is CG1 and first order in L2 is expected if the | ||
# expression is bounded in H1 norm. In the examples order 1.5 is observed on | ||
# both meshes | ||
from math import log as ln | ||
import mshr | ||
|
||
u0 = Expression(('x[0]*x[0]', 'x[1]*x[1]', 'x[2]*x[2]'), degree=2) | ||
|
||
cases = {0: (lambda u: sin(det(grad(u))), | ||
Expression('sin(8*x[0]*x[1]*x[2])', degree=4))} | ||
|
||
expr, exact = cases[which] | ||
if not mesh == 'uniform': | ||
pass | ||
mesh = UnitCubeMesh(1, 1, 1) | ||
# NOTE: I ignore mshr mesh for it seems that the mesh can be degenerate | ||
|
||
e0, h0, dim0 = None, None, None | ||
table = ['\t\t'.join(['h', 'e', RED % 'EOC', 'Time', 'len(Ih)', RED % 'Scaling'])] | ||
print table[-1] | ||
for _ in range(6): | ||
U = VectorFunctionSpace(mesh, 'CG', 1) | ||
u = interpolate(u0, U) | ||
|
||
# How long it takes to construct the interpolant | ||
timer = Timer('CI') | ||
uh = clement_interpolate(expr(u)) | ||
t = timer.stop() | ||
# Error | ||
e = errornorm(exact, uh, 'L2', mesh=mesh) | ||
|
||
h = mesh.hmin() | ||
dim = uh.function_space().dim() | ||
if e0 is not None: | ||
rate = ln(e/e0)/ln(h/h0) | ||
scale = ln(t/t0)/ln(dim/dim0) | ||
fmt = ['%3f' % arg for arg in (h, e, t, dim)] | ||
fmt.insert(2, RED % ('%3f' % rate)) | ||
fmt.append(RED % ('%3f' % scale)) | ||
table.append('\t'.join(fmt)) | ||
print table[-1] | ||
|
||
e0, h0, t0, dim0 = e, h, t, dim | ||
mesh = refine(mesh) | ||
|
||
print 'Final interpolant has %d dofs' % uh.function_space().dim() | ||
|
||
if with_plot and len(uh.ufl_shape) < 2: | ||
e = interpolate(exact, uh.function_space()) | ||
e.vector().axpy(-1, uh.vector()) | ||
plot(e, title='Error') | ||
interactive() | ||
|
||
return table | ||
|
||
# ---------------------------------------------------------------------------- | ||
|
||
if __name__ == '__main__': | ||
usage = ''' | ||
There are respectively 2, 4 and 1 examples demoing Clement interpolation | ||
in dims 1 through 3. You can select them individualy by running | ||
./demo_ClementInterpolation.py i | ||
where i is the index of the demo. If i == 'all' all demos are run. For each | ||
example we show off order of convergence of the constructed interpolant(EOC) | ||
and the rate at which construction time increases with number of dofs of the | ||
interpolant. | ||
''' | ||
import sys | ||
assert len(sys.argv) == 2, usage | ||
|
||
from functools import partial | ||
mesh = 'uniform' | ||
with_plot = False | ||
spec = lambda fi: partial(fi[0], which=fi[1], mesh=mesh, with_plot=with_plot) | ||
|
||
demos = map(spec, | ||
[(demo_ci_1d, i) for i in range(2)] + \ | ||
[(demo_ci_2d, i) for i in range(4)] + \ | ||
[(demo_ci_3d, i) for i in range(1)]) | ||
|
||
if not sys.argv[1] == 'all': demos = [demos[int(sys.argv[1])]] | ||
|
||
for i, demo in enumerate(demos): | ||
table = demo() | ||
print '-'*40, 'Demo', i , '-'*40 | ||
for row in table: print row | ||
print '-'*79 | ||
|
||
print list_timings(TimingClear_keep, [TimingType_wall, TimingType_system]) |
Oops, something went wrong.