Skip to content

Commit

Permalink
an example using the on-the-fly data module
Browse files Browse the repository at this point in the history
  • Loading branch information
rousseab committed Dec 27, 2024
1 parent 98afd87 commit fd25a21
Showing 1 changed file with 117 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
#================================================================================
# Configuration file for a diffusion experiment for 2 pseudo-atoms in 1D.
#
# An 'on-the-fly' Gaussian dataset is created and used for training.
#================================================================================
exp_name: egnn_2_atoms_in_1D
run_name: run1
max_epoch: 1000
log_every_n_steps: 1
gradient_clipping: 0.0
accumulate_grad_batches: 1 # make this number of forward passes before doing a backprop step

elements: [A]

# set to null to avoid setting a seed (can speed up GPU computation, but
# results will not be reproducible)
seed: 1234

# On-the-fly Data Module that creates a Gaussian dataset.
data:
data_source: gaussian
random_seed: 42
number_of_atoms: 2
sigma_d: 0.01
equilibrium_relative_coordinates:
- [0.25]
- [0.75]

train_dataset_size: 8_192
valid_dataset_size: 1_024

batch_size: 64
num_workers: 0
max_atom: 2
spatial_dimension: 1


spatial_dimension: 1

model:
loss:
coordinates_algorithm: mse
atom_types_ce_weight: 0.0
atom_types_lambda_weight: 0.0
relative_coordinates_lambda_weight: 1.0
lattice_lambda_weight: 0.0
score_network:
architecture: egnn
spatial_dimension: 1
num_atom_types: 1
n_layers: 4
coordinate_hidden_dimensions_size: 128
coordinate_n_hidden_dimensions: 4
coords_agg: "mean"
message_hidden_dimensions_size: 128
message_n_hidden_dimensions: 4
node_hidden_dimensions_size: 128
node_n_hidden_dimensions: 4
attention: False
normalize: True
residual: True
tanh: False
edges: fully_connected
noise:
total_time_steps: 100
sigma_min: 0.001
sigma_max: 0.2

# optimizer and scheduler
optimizer:
name: adamw
learning_rate: 0.001
weight_decay: 5.0e-8


scheduler:
name: CosineAnnealingLR
T_max: 1000
eta_min: 0.0

# early stopping
early_stopping:
metric: validation_epoch_loss
mode: min
patience: 1000

model_checkpoint:
monitor: validation_epoch_loss
mode: min

score_viewer:
record_every_n_epochs: 1

score_viewer_parameters:
sigma_min: 0.001
sigma_max: 0.2
number_of_space_steps: 100
starting_relative_coordinates:
- [0.0]
- [1.0]
ending_relative_coordinates:
- [1.0]
- [0.0]
analytical_score_network:
architecture: "analytical"
spatial_dimension: 1
number_of_atoms: 2
num_atom_types: 1
kmax: 5
equilibrium_relative_coordinates:
- [0.25]
- [0.75]
sigma_d: 0.01
use_permutation_invariance: True

logging:
- tensorboard

0 comments on commit fd25a21

Please sign in to comment.