Skip to content

Commit

Permalink
feat(diffusers/pipelines): add pipelines of dit, latent_diffusion and…
Browse files Browse the repository at this point in the history
… stable_diffusion_diffedit (#634)
  • Loading branch information
The-truthh authored Aug 23, 2024
1 parent 9d8f6c9 commit ab96270
Show file tree
Hide file tree
Showing 10 changed files with 2,741 additions and 2 deletions.
8 changes: 8 additions & 0 deletions mindone/diffusers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@
"DDIMPipeline",
"DDPMPipeline",
"DiffusionPipeline",
"DiTPipeline",
"I2VGenXLPipeline",
"IFImg2ImgPipeline",
"IFImg2ImgSuperResolutionPipeline",
Expand Down Expand Up @@ -87,6 +88,8 @@
"Kandinsky3Pipeline",
"LatentConsistencyModelImg2ImgPipeline",
"LatentConsistencyModelPipeline",
"LDMSuperResolutionPipeline",
"LDMTextToImagePipeline",
"PixArtAlphaPipeline",
"ShapEImg2ImgPipeline",
"ShapEPipeline",
Expand All @@ -99,6 +102,7 @@
"StableDiffusionControlNetInpaintPipeline",
"StableDiffusionControlNetPipeline",
"StableDiffusionDepth2ImgPipeline",
"StableDiffusionDiffEditPipeline",
"StableDiffusionGLIGENPipeline",
"StableDiffusionGLIGENTextImagePipeline",
"StableDiffusionImageVariationPipeline",
Expand Down Expand Up @@ -206,6 +210,7 @@
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
I2VGenXLPipeline,
IFImg2ImgPipeline,
IFImg2ImgSuperResolutionPipeline,
Expand Down Expand Up @@ -234,6 +239,8 @@
KandinskyV22PriorPipeline,
LatentConsistencyModelImg2ImgPipeline,
LatentConsistencyModelPipeline,
LDMSuperResolutionPipeline,
LDMTextToImagePipeline,
PixArtAlphaPipeline,
ShapEImg2ImgPipeline,
ShapEPipeline,
Expand All @@ -246,6 +253,7 @@
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepth2ImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionGLIGENPipeline,
StableDiffusionGLIGENTextImagePipeline,
StableDiffusionImageVariationPipeline,
Expand Down
6 changes: 6 additions & 0 deletions mindone/diffusers/pipelines/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,9 @@
"IFPipeline",
"IFSuperResolutionPipeline",
],
"dit": ["DiTPipeline"],
"i2vgen_xl": ["I2VGenXLPipeline"],
"latent_diffusion": ["LDMSuperResolutionPipeline", "LDMTextToImagePipeline"],
"kandinsky": [
"KandinskyCombinedPipeline",
"KandinskyImg2ImgCombinedPipeline",
Expand Down Expand Up @@ -91,6 +93,7 @@
"StableDiffusionXLInstructPix2PixPipeline",
"StableDiffusionXLPipeline",
],
"stable_diffusion_diffedit": ["StableDiffusionDiffEditPipeline"],
"stable_video_diffusion": ["StableVideoDiffusionPipeline"],
"t2i_adapter": [
"StableDiffusionAdapterPipeline",
Expand Down Expand Up @@ -131,6 +134,7 @@
IFPipeline,
IFSuperResolutionPipeline,
)
from .dit import DiTPipeline
from .i2vgen_xl import I2VGenXLPipeline
from .kandinsky import (
KandinskyCombinedPipeline,
Expand All @@ -155,6 +159,7 @@
)
from .kandinsky3 import Kandinsky3Img2ImgPipeline, Kandinsky3Pipeline
from .latent_consistency_models import LatentConsistencyModelImg2ImgPipeline, LatentConsistencyModelPipeline
from .latent_diffusion import LDMSuperResolutionPipeline, LDMTextToImagePipeline
from .pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from .pixart_alpha import PixArtAlphaPipeline
from .shap_e import ShapEImg2ImgPipeline, ShapEPipeline
Expand All @@ -171,6 +176,7 @@
StableDiffusionUpscalePipeline,
)
from .stable_diffusion_3 import StableDiffusion3Pipeline
from .stable_diffusion_diffedit import StableDiffusionDiffEditPipeline
from .stable_diffusion_gligen import StableDiffusionGLIGENPipeline, StableDiffusionGLIGENTextImagePipeline
from .stable_diffusion_xl import (
StableDiffusionXLImg2ImgPipeline,
Expand Down
18 changes: 18 additions & 0 deletions mindone/diffusers/pipelines/dit/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
from typing import TYPE_CHECKING

from ...utils import _LazyModule

_import_structure = {"pipeline_dit": ["DiTPipeline"]}

if TYPE_CHECKING:
from .pipeline_dit import DiTPipeline

else:
import sys

sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)
233 changes: 233 additions & 0 deletions mindone/diffusers/pipelines/dit/pipeline_dit.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,233 @@
# Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
# William Peebles and Saining Xie
#
# Copyright (c) 2021 OpenAI
# MIT License
#
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Optional, Tuple, Union

import numpy as np

import mindspore as ms
from mindspore import ops

from ...models import AutoencoderKL, Transformer2DModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils.mindspore_utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput


class DiTPipeline(DiffusionPipeline):
r"""
Pipeline for image generation based on a Transformer backbone instead of a UNet.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Parameters:
transformer ([`Transformer2DModel`]):
A class conditioned `Transformer2DModel` to denoise the encoded image latents.
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations.
scheduler ([`DDIMScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
"""

model_cpu_offload_seq = "transformer->vae"

def __init__(
self,
transformer: Transformer2DModel,
vae: AutoencoderKL,
scheduler: KarrasDiffusionSchedulers,
id2label: Optional[Dict[int, str]] = None,
):
super().__init__()
self.register_modules(transformer=transformer, vae=vae, scheduler=scheduler)

# create a imagenet -> id dictionary for easier use
self.labels = {}
if id2label is not None:
for key, value in id2label.items():
for label in value.split(","):
self.labels[label.lstrip().rstrip()] = int(key)
self.labels = dict(sorted(self.labels.items()))

def get_label_ids(self, label: Union[str, List[str]]) -> List[int]:
r"""
Map label strings from ImageNet to corresponding class ids.
Parameters:
label (`str` or `dict` of `str`):
Label strings to be mapped to class ids.
Returns:
`list` of `int`:
Class ids to be processed by pipeline.
"""

if not isinstance(label, list):
label = list(label)

for i in label:
if i not in self.labels:
raise ValueError(
f"{i} does not exist. Please make sure to select one of the following labels: \n {self.labels}."
)

return [self.labels[i] for i in label]

def __call__(
self,
class_labels: List[int],
guidance_scale: float = 4.0,
generator: Optional[Union[np.random.Generator, List[np.random.Generator]]] = None,
num_inference_steps: int = 50,
output_type: Optional[str] = "pil",
return_dict: bool = False,
) -> Union[ImagePipelineOutput, Tuple]:
r"""
The call function to the pipeline for generation.
Args:
class_labels (List[int]):
List of ImageNet class labels for the images to be generated.
guidance_scale (`float`, *optional*, defaults to 4.0):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
generator (`np.random.Generator`, *optional*):
A [`np.random.Generator`](https://numpy.org/doc/stable/reference/random/generator.html) to make
generation deterministic.
num_inference_steps (`int`, *optional*, defaults to 250):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple.
Examples:
```py
>>> from mindone.diffusers import DiTPipeline, DPMSolverMultistepScheduler
>>> import mindspore as ms
>>> import numpy as np
>>> pipe = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", mindspore_dtype=ms.float16)
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
>>> # pick words from Imagenet class labels
>>> pipe.labels # to print all available words
>>> # pick words that exist in ImageNet
>>> words = ["white shark", "umbrella"]
>>> class_ids = pipe.get_label_ids(words)
>>> generator = np.random.default_rng(33)
>>> output = pipe(class_labels=class_ids, num_inference_steps=25, generator=generator)
>>> image = output[0][0] # label 'white shark'
```
Returns:
[`~pipelines.ImagePipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
returned where the first element is a list with the generated images
"""

batch_size = len(class_labels)
latent_size = self.transformer.config.sample_size
latent_channels = self.transformer.config.in_channels

latents = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size),
generator=generator,
dtype=self.transformer.dtype,
)
latent_model_input = ops.cat([latents] * 2) if guidance_scale > 1 else latents

class_labels = ms.Tensor(class_labels).reshape(-1)
class_null = ms.Tensor([1000] * batch_size)
class_labels_input = ops.cat([class_labels, class_null], 0) if guidance_scale > 1 else class_labels

# set step values
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
if guidance_scale > 1:
half = latent_model_input[: len(latent_model_input) // 2]
latent_model_input = ops.cat([half, half], axis=0)
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

timesteps = t
if not ops.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = False
if isinstance(timesteps, float):
dtype = ms.float32 if is_mps else ms.float64
else:
dtype = ms.int32 if is_mps else ms.int64
timesteps = ms.Tensor([timesteps], dtype=dtype)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None]
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.broadcast_to((latent_model_input.shape[0],))
# predict noise model_output
noise_pred = self.transformer(latent_model_input, timestep=timesteps, class_labels=class_labels_input)[0]

# perform guidance
if guidance_scale > 1:
eps, rest = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
cond_eps, uncond_eps = ops.split(eps, len(eps) // 2, axis=0)

half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
eps = ops.cat([half_eps, half_eps], axis=0)

noise_pred = ops.cat([eps, rest], axis=1)

# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
model_output, _ = ops.split(noise_pred, latent_channels, axis=1)
else:
model_output = noise_pred

# compute previous image: x_t -> x_t-1
latent_model_input = self.scheduler.step(model_output, t, latent_model_input)[0]

if guidance_scale > 1:
latents, _ = latent_model_input.chunk(2, axis=0)
else:
latents = latent_model_input

latents = 1 / self.vae.config.scaling_factor * latents
samples = self.vae.decode(latents)[0]

samples = (samples / 2 + 0.5).clamp(0, 1)

# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
samples = samples.permute(0, 2, 3, 1).float().asnumpy()

if output_type == "pil":
samples = self.numpy_to_pil(samples)

if not return_dict:
return (samples,)

return ImagePipelineOutput(images=samples)
27 changes: 27 additions & 0 deletions mindone/diffusers/pipelines/latent_diffusion/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
from typing import TYPE_CHECKING

from ...utils import _LazyModule

_dummy_objects = {}
_import_structure = {}

_import_structure["pipeline_latent_diffusion"] = ["LDMBertModel", "LDMTextToImagePipeline"]
_import_structure["pipeline_latent_diffusion_superresolution"] = ["LDMSuperResolutionPipeline"]


if TYPE_CHECKING:
from .pipeline_latent_diffusion import LDMBertModel, LDMTextToImagePipeline
from .pipeline_latent_diffusion_superresolution import LDMSuperResolutionPipeline

else:
import sys

sys.modules[__name__] = _LazyModule(
__name__,
globals()["__file__"],
_import_structure,
module_spec=__spec__,
)

for name, value in _dummy_objects.items():
setattr(sys.modules[__name__], name, value)
Loading

0 comments on commit ab96270

Please sign in to comment.