-
Notifications
You must be signed in to change notification settings - Fork 210
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
chore: switch to cheminfo-build tool
- Loading branch information
Showing
5 changed files
with
123 additions
and
85 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
.idea | ||
node_modules | ||
lib |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
export default { | ||
input: 'src/index.js', | ||
output: { | ||
format: 'cjs', | ||
file: 'lib/index.js' | ||
} | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,101 +1,129 @@ | ||
'use strict'; | ||
|
||
const mlCart = require('ml-cart'); | ||
const mlRandomForest = require('ml-random-forest'); | ||
|
||
const ML = exports; | ||
import { DecisionTreeClassifier, DecisionTreeRegression } from 'ml-cart'; | ||
import { | ||
RandomForestClassifier, | ||
RandomForestRegression | ||
} from 'ml-random-forest'; | ||
|
||
// Try to keep this list in the same structure as the README. | ||
|
||
// Unsupervised learning | ||
ML.PCA = require('ml-pca'); | ||
ML.HClust = require('ml-hclust'); | ||
ML.KMeans = require('ml-kmeans'); | ||
export { PCA } from 'ml-pca'; | ||
import * as HClust from 'ml-hclust'; | ||
export { HClust }; | ||
export { default as KMeans } from 'ml-kmeans'; | ||
|
||
// Supervised learning | ||
ML.NaiveBayes = require('ml-naivebayes'); | ||
ML.KNN = require('ml-knn'); | ||
ML.PLS = require('ml-pls'); | ||
ML.CrossValidation = require('ml-cross-validation'); | ||
ML.ConfusionMatrix = require('ml-confusion-matrix'); | ||
ML.DecisionTreeClassifier = mlCart.DecisionTreeClassifier; | ||
ML.RandomForestClassifier = mlRandomForest.RandomForestClassifier; | ||
import * as NaiveBayes from 'ml-naivebayes'; | ||
export { NaiveBayes }; | ||
export { default as KNN } from 'ml-knn'; | ||
export { PLS, KOPLS } from 'ml-pls'; | ||
export { default as CrossValidation } from 'ml-cross-validation'; | ||
export { default as ConfusionMatrix } from 'ml-confusion-matrix'; | ||
export { DecisionTreeClassifier }; | ||
export { RandomForestClassifier }; | ||
|
||
// Artificial neural networks | ||
ML.FNN = require('ml-fnn'); | ||
ML.SOM = require('ml-som'); | ||
export { default as FNN } from 'ml-fnn'; | ||
export { default as SOM } from 'ml-som'; | ||
|
||
// Regression | ||
const Regression = require('ml-regression'); | ||
ML.SimpleLinearRegression = Regression.SimpleLinearRegression; | ||
ML.PolynomialRegression = Regression.PolynomialRegression; | ||
ML.MultivariateLinearRegression = Regression.MultivariateLinearRegression; | ||
ML.PowerRegression = Regression.PowerRegression; | ||
ML.ExponentialRegression = Regression.ExponentialRegression; | ||
ML.TheilSenRegression = Regression.TheilSenRegression; | ||
ML.RobustPolynomialRegression = Regression.RobustPolynomialRegression; | ||
ML.DecisionTreeRegression = mlCart.DecisionTreeRegression; | ||
ML.RandomForestRegression = mlRandomForest.RandomForestRegression; | ||
export { | ||
SimpleLinearRegression, | ||
PolynomialRegression, | ||
MultivariateLinearRegression, | ||
PowerRegression, | ||
ExponentialRegression, | ||
TheilSenRegression, | ||
RobustPolynomialRegression | ||
} from 'ml-regression'; | ||
export { DecisionTreeRegression }; | ||
export { RandomForestRegression }; | ||
|
||
// Optimization | ||
ML.levenbergMarquardt = require('ml-levenberg-marquardt'); | ||
export { default as levenbergMarquardt } from 'ml-levenberg-marquardt'; | ||
|
||
// Math | ||
const Matrix = require('ml-matrix'); | ||
ML.Matrix = Matrix.Matrix; | ||
ML.SVD = Matrix.SVD; | ||
ML.EVD = Matrix.EVD; | ||
ML.CholeskyDecomposition = Matrix.CholeskyDecomposition; | ||
ML.LuDecomposition = Matrix.LuDecomposition; | ||
ML.QrDecomposition = Matrix.QrDecomposition; | ||
import * as MatrixLib from 'ml-matrix'; | ||
const { | ||
Matrix, | ||
SVD, | ||
EVD, | ||
CholeskyDecomposition, | ||
LuDecomposition, | ||
QrDecomposition | ||
} = MatrixLib; | ||
export { | ||
MatrixLib, | ||
Matrix, | ||
SVD, | ||
EVD, | ||
CholeskyDecomposition, | ||
LuDecomposition, | ||
QrDecomposition | ||
}; | ||
|
||
ML.SparseMatrix = require('ml-sparse-matrix'); | ||
ML.Kernel = require('ml-kernel'); | ||
ML.Distance = require('ml-distance').distance; | ||
ML.Similarity = require('ml-distance').similarity; | ||
ML.distanceMatrix = require('ml-distance-matrix'); | ||
ML.XSadd = require('ml-xsadd').default; | ||
export { SparseMatrix } from 'ml-sparse-matrix'; | ||
export { default as Kernel } from 'ml-kernel'; | ||
import { distance, similarity } from 'ml-distance'; | ||
export { distance as Distance, similarity as Similarity }; | ||
export { default as distanceMatrix } from 'ml-distance-matrix'; | ||
export { default as XSadd } from 'ml-xsadd'; | ||
|
||
// Statistics | ||
ML.Performance = require('ml-performance'); | ||
export { default as Performance } from 'ml-performance'; | ||
|
||
// Data preprocessing | ||
ML.savitzkyGolay = require('ml-savitzky-golay'); | ||
export { default as savitzkyGolay } from 'ml-savitzky-golay'; | ||
|
||
// Utility | ||
ML.BitArray = require('ml-bit-array'); | ||
ML.HashTable = require('ml-hash-table'); | ||
ML.padArray = require('ml-pad-array'); | ||
ML.binarySearch = require('binary-search'); | ||
ML.numSort = require('num-sort'); | ||
ML.Random = require('ml-random').default; | ||
|
||
// Undocumented/deprecated packages | ||
ML.ArrayUtils = require('ml-array-utils'); | ||
ML.Regression = require('ml-regression'); | ||
ML.MatrixUtil = require('ml-matrix'); | ||
|
||
ML.Array = { | ||
min: require('ml-array-min').default, | ||
max: require('ml-array-max').default, | ||
median: require('ml-array-median').default, | ||
mean: require('ml-array-mean').default, | ||
mode: require('ml-array-mode').default, | ||
normed: require('ml-array-normed').default, | ||
rescale: require('ml-array-rescale').default, | ||
sequentialFill: require('ml-array-sequential-fill').default, | ||
standardDeviation: require('ml-array-standard-deviation').default, | ||
variance: require('ml-array-variance').default | ||
export { default as BitArray } from 'ml-bit-array'; | ||
export { default as HashTable } from 'ml-hash-table'; | ||
export { default as padArray } from 'ml-pad-array'; | ||
export { default as binarySearch } from 'binary-search'; | ||
import * as numSort from 'num-sort'; | ||
export { numSort }; | ||
export { default as Random } from 'ml-random'; | ||
|
||
import min from 'ml-array-min'; | ||
import max from 'ml-array-max'; | ||
import median from 'ml-array-median'; | ||
import mean from 'ml-array-mean'; | ||
import mode from 'ml-array-mode'; | ||
import normed from 'ml-array-normed'; | ||
import rescale from 'ml-array-rescale'; | ||
import sequentialFill from 'ml-array-sequential-fill'; | ||
import standardDeviation from 'ml-array-standard-deviation'; | ||
import variance from 'ml-array-variance'; | ||
export const Array = { | ||
min, | ||
max, | ||
median, | ||
mean, | ||
mode, | ||
normed, | ||
rescale, | ||
sequentialFill, | ||
standardDeviation, | ||
variance | ||
}; | ||
|
||
ML.ArrayXY = { | ||
centroidsMerge: require('ml-array-xy-centroids-merge').default, | ||
closestX: require('ml-arrayxy-closestx').default, | ||
maxMerge: require('ml-array-xy-max-merge').default, | ||
maxY: require('ml-array-xy-max-y').default, | ||
sortX: require('ml-array-xy-sort-x').default, | ||
uniqueX: require('ml-arrayxy-uniquex').default, | ||
weightedMerge: require('ml-array-xy-weighted-merge').default, | ||
equallySpaced: require('ml-array-xy-equally-spaced').default, | ||
filterX: require('ml-array-xy-filter-x').default | ||
import centroidsMerge from 'ml-array-xy-centroids-merge'; | ||
import closestX from 'ml-arrayxy-closestx'; | ||
import maxMerge from 'ml-array-xy-max-merge'; | ||
import maxY from 'ml-array-xy-max-y'; | ||
import sortX from 'ml-array-xy-sort-x'; | ||
import uniqueX from 'ml-arrayxy-uniquex'; | ||
import weightedMerge from 'ml-array-xy-weighted-merge'; | ||
import equallySpaced from 'ml-array-xy-equally-spaced'; | ||
import filterX from 'ml-array-xy-filter-x'; | ||
export const ArrayXY = { | ||
centroidsMerge, | ||
closestX, | ||
maxMerge, | ||
maxY, | ||
sortX, | ||
uniqueX, | ||
weightedMerge, | ||
equallySpaced, | ||
filterX | ||
}; |