Skip to content

Commit

Permalink
2. Levels of MLOps 문서수정 (#124)
Browse files Browse the repository at this point in the history
* 기존 Google MLOps level 1,2 이미지 수정

* Google MLOps level 1,2 설명 수정(Model serving 관련)
  • Loading branch information
binarybamboo authored Feb 21, 2024
1 parent b0e0c62 commit 9062973
Show file tree
Hide file tree
Showing 6 changed files with 15 additions and 2 deletions.
Binary file added docs/introduction/img/level-1-modelserving.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file modified docs/introduction/img/level-2.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
9 changes: 8 additions & 1 deletion docs/introduction/levels.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ description: "Levels of MLOps"
sidebar_position: 2
date: 2021-12-03
lastmod: 2022-03-05
contributors: ["Jongseob Jeon"]
contributors: ["Jongseob Jeon", "Chanmin Cho"]

---

Expand Down Expand Up @@ -81,6 +81,13 @@ Real World에서 데이터는 Data Shift라는 데이터의 분포가 계속해

정리하자면 CT를 위해서는 Auto Retraining과 Auto Deploy 두 가지 기능이 필요합니다. 둘은 서로의 단점을 보완해 계속해서 모델의 성능을 유지할 수 있게 합니다.

### Model Serving

![level-1-modelserving](./img/level-1-modelserving.png)

프로덕션 환경에서의 머신러닝 파이프라인은 새로운 데이터에 기반한 최신 모델을 예측 서비스에 지속적으로 배포합니다. 이 과정에서, 훈련되고 검증된 모델을 온라인 예측 서비스에 자동적으로 배포하는 작업이 포함됩니다.


## 2단계: CI/CD 파이프라인의 자동화

![level-2](./img/level-2.png)
Expand Down
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ description: "Levels of MLOps"
sidebar_position: 2
date: 2021-12-03
lastmod: 2022-03-05
contributors: ["Jongseob Jeon"]
contributors: ["Jongseob Jeon", "Chanmin Cho"]

---

Expand Down Expand Up @@ -77,6 +77,12 @@ There is a simple solution to address this blind spot. It involves checking whet
To summarize, for Continuous Training (CT), both Auto Retrain and Auto Deploy are necessary. They complement each other's weaknesses and enable the model's performance to be maintained continuously.


### Model Serving

![level-1-modelserving](./img/level-1-modelserving.png)

Machine learning pipelines in production continuously deploy the latest models based on new data to your prediction service. This process involves automatically deploying trained and validated models to online prediction services.


## Level 2: Automating the CI/CD Pipeline

Expand Down

0 comments on commit 9062973

Please sign in to comment.