Package website: release | dev
Concise, informative summaries of machine learning models. Based on mlr3. Inspired by the summary output of (generalized) linear models.
Install the last release from CRAN:
install.packages("mlr3summary")
Install the development version from GitHub:
# install.packages("pak")
pak::pak("mlr-org/mlr3summary")
library(mlr3summary)
data("credit", package = "mlr3summary")
task = as_task_classif(credit, target = "risk", positive = "good")
set.seed(12005L)
rf = lrn("classif.ranger", predict_type = "prob")
rf$train(task)
cv3 = rsmp("cv", folds = 3L)
rr = resample(task = task, learner = rf, resampling = cv3, store_models = TRUE)
rr$aggregate(msrs(list("classif.acc", "classif.auc")))
summary(object = rf, resample_result = rr)
![summary_output](https://private-user-images.githubusercontent.com/25373845/321387373-84b6cf8f-72d6-42ae-8218-5df1623008a3.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzg3NTAzMTUsIm5iZiI6MTczODc1MDAxNSwicGF0aCI6Ii8yNTM3Mzg0NS8zMjEzODczNzMtODRiNmNmOGYtNzJkNi00MmFlLTgyMTgtNWRmMTYyMzAwOGEzLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDUlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA1VDEwMDY1NVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTNjNDA3OTFhMGU2NTkxMDIyZWRhMDkxYjNlNWJiZjIzZDE3MmMxYzc4NWQ4MTIwNzQ4NDU4NzYyMTYzOWZlOTkmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.s07AqJxK_1i3EZjfr1BmL-0Gy0GFfPxaMLRMhf3jGXo)
More examples can be found in demo/.
If you use mlr3summary
, please cite:
Dandl S, Becker M, Bischl B, Casalicchio G, Bothmann L (2024).
mlr3summary: Model and learner summaries for 'mlr3'.
R package version 0.1.0.
A BibTeX entry for LaTeX users is
@Manual{
title = {mlr3summary: Model and learner summaries for 'mlr3'},
author = {Susanne Dandl and Marc Becker and Bernd Bischl and Giuseppe Casalicchio and Ludwig Bothmann},
year = {2024},
note = {R package version 0.1.0}
}