Configuration library that supports loading configuration from ini, environment variables and arguments into a pydantic schema.
With the pydantic schema you will have a fully typed configuration object that is parsed at load time.
Support list/set/dict defaults, so you can now do:
intlist: List[int] = Field([0,1,2], description="List of ints")
The previous way to defined defaults using strings are still supported, but will fail type checking with the pydantic mypy plugin, and will be removed in a later version:
intlist: List[int] = Field("0,1,2", description="List of ints")
Support for pydantic 2.x. It is advised to migrate models with these changes:
Pydantic has builtin support for size of list, dictionaries and sets using min_length
so you should change
intlist: List[int] = Field(description="Space separated list of ints", min_size=1)
to
intlist: List[int] = Field(description="Space separated list of ints", min_length=1)
Do not use split
and kv_split
directly on the field, but put them in a dictionary json_schema_extra
. E.g. change
intlist: List[int] = Field(description="Space separated list of ints", split=" ")
to
intlist: List[int] = Field(
description="Space separated list of ints", json_schema_extra={"split": " "}
)
and change
dict_int: Dict[str, int] = Field(
description="Int Dict split by slash and dash", split="-", kv_split="/"
)
to
dict_int: Dict[str, int] = Field(
description="Int Dict split by slash and dash",
json_schema_extra={"split": "-", "kv_split": "/"},
)
root_validator
are stil supported, but it is advised to migrate to model_validator
. Example using helper function raise_if_some_and_not_all
:
@model_validator(mode="after") # type: ignore
def check_arguments(cls, m: "ExampleConfig") -> "ExampleConfig":
"""If one argument is set, they should all be set"""
caep.raise_if_some_and_not_all(
m.__dict__, ["username", "password", "parent_id"]
)
return m
#!/usr/bin/env python3
from typing import List
from pydantic import BaseModel, Field
import caep
class Config(BaseModel):
text: str = Field(description="Required String Argument")
number: int = Field(default=1, description="Integer with default value")
switch: bool = Field(description="Boolean with default value")
intlist: List[int] = Field(description="Space separated list of ints", json_schema_extra={"split": " "})
# Config/section options below will only be used if loading configuration
# from ini file (under ~/.config)
config = caep.load(
Config,
"CAEP Example",
"caep", # Find .ini file under ~/.config/caep
"caep.ini", # Find .ini file name caep.ini
"section", # Load settings from [section] (default to [DEFAULT]
)
print(config)
Sample output with a intlist
read from environment and switch
from command line:
$ export INTLIST="1 2 3"
$ ./example.py --text "My value" --switch
text='My value' number=1 switch=True intlist=[1, 2, 3]
Specifying configuration location, name and section is optional and can be skipped if you
do not want to support loading ini files from $XDG_CONFIG_HOME
:
# Only load arguments from environment and command line
config = caep.load(
Config,
"CAEP Example",
)
With the code above you can still specify a ini file with --config <ini-file>
, and use
environment variables and command line arguments.
Pydantic fields should be defined using Field
and include the description
parameter
to specify help text for the commandline.
Unless the Field
has a default
value, it is a required field that needs to be
specified in the environment, configuration file or on the command line.
Many of the types described in https://docs.pydantic.dev/usage/types/ should be supported, but not all of them are tested. However, nested schemas are not supported.
Tested types:
Standard string argument.
Values parsed as integer.
Value parsed as float.
Value parsed as Path.
Values parsed and validated as IPv4Address.
Values parsed and validated as IPv4Network.
Value parsed as booleans. Booleans will default to False, if no default value is set. Examples:
Field | Input | Configuration |
---|---|---|
enable: bool = Field(description="Enable") |
False | |
enable: bool = Field(value=False, description="Enable") |
yes |
True |
enable: bool = Field(value=False, description="Enable") |
true |
True |
disable: bool = Field(value=True, description="Disable") |
True | |
disable: bool = Field(value=True, description="Disable") |
yes |
False |
disable: bool = Field(value=True, description="Disable") |
true |
False |
List of strings, split by specified character (default = comma, argument=split
).
Some examples:
Field | Input | Configuration |
---|---|---|
List[int] = Field(description="Ints", json_schema_extra={"split": " "}) |
1 2 |
[1, 2] |
List[str] = Field(description="Strs") |
ab,bc |
["ab", "bc"] |
The argument min_length
(pydantic builtin) can be used to specify the minimum size of the list:
Field | Input | Configuration |
---|---|---|
List[str] = Field(description="Strs", min_length=1) |
`` | Raises ValidationError |
Set, split by specified character (default = comma, argument=split
).
Some examples:
Field | Input | Configuration |
---|---|---|
Set[int] = Field(description="Ints", json_schema_extra={"split": " "}) |
1 2 2 |
{1, 2} |
Set[str] = Field(description="Strs") |
ab,ab,xy |
{"ab", "xy"} |
The argument min_length
can be used to specify the minimum size of the set:
Field | Input | Configuration |
---|---|---|
Set[str] = Field(description="Strs", min_length=1) |
`` | Raises ValidationError |
Dictioray of strings, split by specified character (default = comma, argument=split
for
splitting items and colon for splitting key/value).
Some examples:
Field | Input | Configuration |
---|---|---|
Dict[str, str] = Field(description="Dict") |
x:a,y:b |
{"x": "a", "y": "b"} |
Dict[str, int] = Field(description="Dict of ints") |
a b c:1, d e f:2 |
{"a b c": 1, "d e f": 2} |
The argument min_length
can be used to specify the minimum numer of keys in the dictionary:
Field | Input | Configuration |
---|---|---|
Dict[str, str] = Field(description="Strs", min_length=1) |
`` | Raises ValidationError |
Arguments are parsed in two phases. First, it will look for the optional argument --config
which can be used to specify an alternative location for the ini file. If not --config
argument
is given it will look for an optional ini file in the following locations
(~/.config has presedence
) if config_id
and config_name
is specified:
~/.config/<CONFIG_ID>/<CONFIG_FILE_NAME>
(or directory specified by$XDG_CONFIG_HOME
)/etc/<CONFIG_FILE_NAME>
The ini file can contain a [DEFAULT]
section that will be used for all configurations.
In addition it can have a section that corresponds with <SECTION_NAME>
(if specified) that for
specific configuration, that will over override config from [DEFAULT]
The configuration step will also look for environment variables in uppercase and
with -
replaced with _
. For the example below it will lookup the following environment
variables:
- $NUMBER
- $BOOL
- $STR_ARG
The configuration presedence are (from lowest to highest):
- argparse default
- ini file
- environment variable
- command line argument
Helper functions to use XDG Base Directories are included in caep.xdg
:
It will look up XDG
environment variables like $XDG_CONFIG_HOME
and use
defaults if not specified.
Generic function to get a XDG
directory.
The following example with will return a path object to ~/.config/myprog
(if $XDG_CONFIG_HOME
is not set) and create the directoy if it does not
exist.
get_xdg_dir("myprog", "XDG_CONFIG_HOME", ".config", True)
Shortcut for get_xdg_dir("CONFIG")
.
Shortcut for get_xdg_dir("CACHE")
.
Prior to version 0.1.0
the recommend usage was to add parser objects manually. This is
still supported, but with this approach you will not get the validation from pydantic:
>>> import caep
>>> import argparse
>>> parser = argparse.ArgumentParser("test argparse")
>>> parser.add_argument('--number', type=int, default=1)
>>> parser.add_argument('--bool', action='store_true')
>>> parser.add_argument('--str-arg')
>>> args = caep.config.handle_args(parser, <CONFIG_ID>, <CONFIG_FILE_NAME>, <SECTION_NAME>)
Raise ArgumentError if some of the specified entries in the dictionary has non false values but not all
class ExampleConfig(BaseModel):
username: Optional[str] = Field(description="Username")
password: Optional[str] = Field(description="Password")
parent_id: Optional[str] = Field(description="Parent ID")
@model_validator(mode="after") # type: ignore
def check_arguments(cls, m: "ExampleConfig") -> "ExampleConfig":
"""If one argument is set, they should all be set"""
caep.raise_if_some_and_not_all(
m.__dict__, ["username", "password", "parent_id"]
)
return m
Return first external module that called this function, directly, or indirectly